大数据时代的数据治理

发布时间:2020.03.19来源:知乎浏览量:3次标签:数据治理

随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破?相比传统数仓时代,进入Hadoop集群的数据更加的多样、更加的复杂、量更足,这个数仓时代都没有处理好的事情,如何能够在大数据时代处理好,这是所有大数据应用者最最期盼的改变,也是大数据平台建设者最有挑战的难题:数据治理难的不是技术,而是流程,是协同,是管理。

数据治理并不等同于数据管理,而只是数据管理的顶层执行层面。数据管理指规划、控制和提供数据及信息资产,发挥数据和信息资产的价值,强调在企业间或企业内部进行。数据治理是对数据资产管理活动行使权力和控制的活动集合(规划、监控和执行)。数据治理制定正确的原则、政策、流程、操作规程,确保以正确的方式对数据和信息进行管理。

数据资产管理是业务部门和IT部门的共同职责,需要由业务部门和IT部门分别或共同制定相关决策,如业务运营模型、数据治理模型、企业信息模型、业务规范、信息规范、数据库架构、数据仓库/商务智能架构、元数据架构、技术元数据、数据安全管理等。

对于一个企业来说,把数据作为资产,才是建设大数据的最终目的,而不是仅仅是因为Hadoop架构带来性价比和未来的扩展性。当一个企业把数据作为资产,他就像管理自己名下存折、信用卡一样,定期梳理,无时无刻不关心资产的变化情况,关注资产的质量。

而资产目录就是管理资产的形式和手段,他像菜单一样对企业的资产进行梳理、分门别类,提供给使用者;使用者通过菜单,点选自己需要的数据,认可菜单对应的后端处理价值,后厨通过适当的加工,推出相应的数据服务;这是一个标准的流程,而这些流程之上,附着一整套数据管理目标和流程。

大数据平台以数据资产目录为核心,将元数据、数据标准、主数据、数据质量、数据生命周期、数据轮廓等信息在逻辑层面关联起来,在管理层面上整合成统一的整体,构建起数据管理体系,全面的支持数据服务等具体应用。

根据DAMA(国际数据管理协会)的定义,数据治理(Data Governance)是指对数据资产的管理活动行使权力和控制的活动集合(规划、监控和执行)。数据治理是识别、管理和解决几种不同类型数据相关问题的手段,包括数据质量问题、数据命名和定义冲突、数据安全等问题。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议