不同部门的数据分析需求,如何满足?

发布时间:2019.01.27来源:亿信华辰浏览量:2次标签:数据治理

让数据驱动落地企业,要先明确商业目的是什么,找到方向才能更好地指导业务。在互联网金融企业中,用户与交易额是各部门工作开展的核心所在。互金企业重点关注资金量和资产量,工作都是围绕此目标而展开。

不同部门有着不同的数据分析需求。例如,商务部门的工作核心是获客、拉新;运营部门关注如何提升客户活跃度并减少用户的流失,产品部门聚焦产品功能与优化,以提升用户的体验;管理层关心各个部门运营状况,以及业绩的达成情况。

数据分析虽然不能直接带来业绩增长,但为产品改进和决策提供了方向,让产品以最符合受众需求和体验的方式促进企业业绩提升。结合我在曾经的实际工作中,以及商务部门、运营部门、管理者的数据分析的真实案例,介绍如何应用数据满足不同部门的分析需求、以及企业在数据分析过程中存在的通病和应对之策。商务部门、运营部门、老板关注都有哪些数据分析需求?

商务部门:用户投资转化率

先从商务部门的获客说起,为监测渠道推广的效果,我会给每个渠道分配唯一标识,用来区分各渠道用户的来源。为了让相关渠道的推广人员能清晰了解渠道状况,我会推送一些渠道分析的报表,包含了渠道流量、注册用户数、投资用户数、投资转化率、用户的整体投资额、人均投资额等。

 

图1 数据驱动下的渠道分析流程

在整个渠道分析的过程中,我们经过异常指标、定位问题、解决问题等流程,最终驱动获客的提升。下面是我工作中真实的案例。

场景1:为何注册用户的投资转化率下降了2%?

当发现这个异常指标,我们要做以下判断:是大部分渠道均有所下降,还是单渠道的影响?在转化过程中,客户会在哪个环节中卡壳?出现问题的原因是什么……

通过分渠道查看并对比近一周的用户转化漏斗,发现前一天注册的用户在申请充值到充值成功步骤的转化率明显降低。为进一步挖掘原因,我通过分时段查看每个时段的充值成功率,发现晚上7点到9点充值成功率出现问题。最终技术调取日志确定是第三方支付平台的问题,因为在晚上7~9点间服务器出现故障。

为此,我们增加充值成功率指标监测,设置预警值,发生异常可及时反馈到相关人员。

场景2:为何注册用户充值成功,却没有转化为投资用户?

用户充值成功,初衷一定是希望在平台上完成投资的,因此没有转化投资用户属于异常情况。通过分析发现,是“标”的供给不足。老客户熟悉秒杀“标”的规则和“标”的发放时间,导致新手抢不到“标”。为此我们开辟了新手专区,从而保障新用户的转化率。

运营部门:资金管理、理财产品管理   

互金行业的运营部门关注资金管理、理财产品管理。在投金额、回款&投资、充值&提现、净流入、沉淀资金等指标是监管平台资金常用的指标。与此相比,更重要的是如何看待和理解这些指标,若指标发生异常波动,要及时定位问题来驱动业务增长。

 

图2 平台监管常用的数据指标

例如,为什么金融企业需要关注沉淀资金?沉淀资金是金融客户在平台的可用余额,是企业平台所募集的资金,若未能转化为投资额,是无法给企业带来价值的。若发现沉淀资金数值出现异常,背后有各种可能,如产品供给不足造成资金闲置;产品功能异常(自动复投失败);或者大客户回款忘记复投,都可能会产生沉淀资金。

在理财产品管理实践中,数据分析给予了一些指导意义,例如:

我们通过分析发现,临近春节前 3 个月,短期标会供不应求,其中原因不难理解:一些用户尽管手头有很多闲置资金想投资,但春节期间会有较多的花费。这个结论为短期标的管理与发放提供了一些引导。

再如,通过分析发现,不同客户对产品偏好的差异性较大。大客户承受的风险能力很强,该用户群追求高收益,因此在其投资的产品中,长期标占比是最高;而小客户因为资金有限,这部分群体有灵活性的考虑,故短期标的占比最高。

老板:数据报告、目标管理

老板最喜欢看报告!数据部门最基本的工作是提供日报、月报、季度、年报、各团队业绩考核报告等。呈交老板的数据报告通常会包括综合指标统计、部门业绩拆分、产品分析、用户分析等内容。

 

图3 老板所关注数据报告的常见内容

除了报告之外,老板还希望达到资金与资产的平衡:资金是企业通过营销渠道拓取客户,若资产有限用户无法投资,将导致用户流失,造成营销费用的浪费;若资产较高却没能及时募集相应资金,企业会为资产付出较高的成本。在我们的数据分析工作中,会通过回款和复投率等指标进行资金预测,帮助老板解决目标管理等问题。

 

图4  老板关注资金和资产的平衡

在这些年的数据分析实践中,以及在神策数据与众多行业客户交流中,不难发现企业在数据分析过程中普遍存在众多问题。如数据资产问题:用户行为数据的采集难以在内部实现,以及数据安全性无法保证;数据孤岛,用户明细数据拿不到,企业内部数据存在孤岛;用户行为数据与业务数据割裂; CRM、第三方数据、业务数据无法打通等;分析效率,即业务人员数据需求求助于分析师,沟通成本高;需求排队、不能得到及时反馈;低价值、重复的工作,人力严重浪费等。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 98%的企业备战数据治理,尚未入局的你还在等什么

    98%的企业备战数据治理,尚未入局的你还在等什么

    UBM近日发布了一份2018企业数据治理白皮书。白皮书中分析了数据治理的现状:虽然越来越多的企业(尤其是业务部门及IT部门)逐渐开始关注……查看详情

    发布时间:2019.05.30来源:亿信华辰浏览量:2次

  • 数据分析加数据治理-让数据清澈如水

    数据分析加数据治理-让数据清澈如水

    在如今数据大浪潮下,如果您的业务很多,那么它就会大量堆积并且产生新的问题。我们生活在一个数据驱动的世界里。数据推动了我们从不同地方获得的……查看详情

    发布时间:2019.08.30来源:浏览量:2次

  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:2次

  • 数据标准化的难题

    数据标准化的难题

    数据标准好制定,但是数据标准落地相对就困难多了。国内的数据标准化工作发展了那么多年,各个行业,各个组织都在建设自己的数据标准,但是你很少……查看详情

    发布时间:2019.12.20来源:知乎浏览量:1次

  • 数据治理的伦理 - “数据带来利益和负债”

    数据治理的伦理 - “数据带来利益和负债”

    数据从未像现在这样强大。2018年发现了一些历史上最大的数据泄露事件,包括万豪酒店集团违规行为和剑桥分析公司丑闻,两者都对国际关系产生了……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:1次

  • 数据治理带给企业的6个惊喜

    数据治理带给企业的6个惊喜

    数据治理实际是一把双刃剑。一方面,法律法规的强制规定能立即引起客户对数据治理的重视。另一方面,为了达到合规,很多企业在实际操作中只会做到……查看详情

    发布时间:2019.11.22来源:知乎浏览量:1次

  • 银行数据治理方法浅析

    银行数据治理方法浅析

    数据是银行最核心的资产,数据治理能成就银行的未来。数据治理是一个新兴的并且不断演进的概念,涉及数据质量、数据管理、数据政策、商业过程管理……查看详情

    发布时间:2019.02.21来源:知乎浏览量:2次

  • 2019年专注于稳健数据治理的合规性,质量和定制

    2019年专注于稳健数据治理的合规性,质量和定制

    数据治理,组织内数据的正确和有组织的管理,仍然是2019年的一个焦点。对于希望充分利用其数据的组织,他们必须建立系统以确保数据的正确性,……查看详情

    发布时间:2019.03.26来源:亿信华辰浏览量:1次

  • 为什么数据治理会带来数据驱动的成功

    为什么数据治理会带来数据驱动的成功

    通过寻找创造价值和改进执行的新方法,各种形式和规模的组织都在积极地采用数据驱动的方法,这些方法可以通过分析的进步来实现。……查看详情

    发布时间:2019.01.26来源:亿信华辰浏览量:2次

  • 企业数据治理战略中的重要任务

    企业数据治理战略中的重要任务

    尽管许多企业的数据治理在被不经意间悄悄地忽视了,只有48%的企业拥有明确的规划或计划,但这并不影响数据治理的重要性,它聚焦于三个关键因素……查看详情

    发布时间:2020.07.14来源:知乎浏览量:7次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议