您不应该进行数据治理的3个理由
发布时间:2018.12.13来源:数据治理浏览量:91次标签:数据治理
今天有很多关于数据治理的讨论。但令人惊讶的是,今天“进行数据治理”的组织数量并不高。在我看来,数据治理是现代数据驱动型企业的必备条件。但我想您的组织决定不进行数据治理有几个原因。
理由#1:组织中的每个人都可以轻松查找数据
到目前为止,许多组织已经投资了某种类型的自助BI或可视化工具。希望这个神奇的工具能够为所有商业用户解锁数据,以便他们能够发现隐藏的见解,将您的公司推向新的竞争高度。他们所需要的只是正确的数据,而智慧的宝石将会溢出。因此,如果您的组织每次都快速找到正确的数据而没有任何问题,那么您可能不需要进行数据治理。
但如果你像我谈到的大多数公司一样,现实远非如此。可能有一些数据高手使用您的自助式BI工具,但最有可能的是大多数人没有。为什么?有几个原因。首先,他们可能找不到数据他们需要做分析。如果他们找不到数据,那么他们可能不会使用该工具,如果有的话。其次,假设他们找到了一些数据,他们可能不知道它意味着什么 - 或者如何找出它意味着什么。如果他们不知道这意味着什么,那么他们可能不会非常使用该工具,如果有的话。第三,假设他们找到数据并知道它意味着什么,他们不知道它是否值得信赖。如果他们不知道他们是否可以信任这些数据,那么(我确定你会看到它的发展方向),如果有的话,他们可能不会非常使用这个工具。
如果这听起来很熟悉,不要灰心。我与之交谈的大多数公司都在同一条船上。他们意识到,要实现自助式商务智能的承诺,他们需要数据治理。他们需要一个数据记录系统,以及一个受管理的数据目录,帮助所有业务用户查找,理解和信任数据。
理由2:你的数据池是原始的
如果你正在阅读这篇博文,那么你很清楚围绕大数据的炒作。可能的情况是,您的组织有一个数据池,其中包含充满竞争优势的数据集。如果您的组织的数据池与高山草甸一样纯净,那么您可能不需要数据治理。
不幸的是,我还没有看到一家公司的数据池几乎是原始的。事实上,大多数数据都填充了相同数据的略微修改版本。真的,这并不奇怪。数据池承诺持有大量结构化和非结构化数据,数据用户可以使用我之前提到的自助服务BI工具访问这些数据。但问题是进入数据池的数据受到污染,并且没有办法防止更多的污染进入那里。然后你拿一些污染的数据,把它与其他污染的数据混合起来,然后创建一个新的数据集......你会看到它的发展方向。
结果是一个充满数据的泥泞湖泊,可能 - 或可能不 - 质量好。如果这听起来像你,再次,你绝对不是一个人。再一次,数据治理可以提供帮助。通过建立治理流程来检查数据,然后将其提取到数据库中,您可以放心,您放入数据池的数据质量很高,并且遵循数据组织设置的规则和标准。而想要使用该数据的用户可以通过受管理的目录轻松找到它以及有关它的所有内容。
理由3:你不需要遵守任何规定 - 永远不会
法规是现代商业的重要组成部分。只要问任何被迫遵守BCBS 239或CCAR的大型银行。并非每个企业都像银行一样受到监管,但是越来越多的监管机构不仅要求提供有关您业务的报告,而且还要求您通过正确的数据证实这些报告是正确的。现在,你可能在想,这不适用于我。所以我不需要做数据治理。
但还有更多比如隐私监管。采用通用数据保护法规(GDPR)例如。这项新法规的重点是保护欧盟公民的个人数据。它具有巨大的影响力 - 如果你在2018年5月25日之前没有遵守规定,那将会产生巨大的影响(认为全球收入的2-4%会受到罚款!)。虽然你可能会想“我是一家美国公司。GDPR不适用于我“ - 再想一想。任何与欧盟公民有业务往来并保留相关信息的公司(即使只是姓名和电话号码)都需要遵守,即使他们不在欧盟。合规的一部分能够表明您正在做正确的事情来保护和保护欧盟公民的个人数据。除了其他方面,您还需要能够显示血统,所有权和访问权限。你猜对了 - 数据治理是证明你掌握个人数据的关键。
-
如何建设财务主数据?四大问题对症下药各个击破
企业主数据是用来描述企业核心业务实体的基础数据,它是具有高业务价值、可在企业内跨越各个业务部门被重复使用的数据。财务主数据作为企业主数据……查看详情发布时间:2020.09.19来源:头条浏览量:108次
-
数据治理的未来:平衡数据治理和数据管理
如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?在为所有CitizenBank的企业数据创建和实施……查看详情发布时间:2018.12.27来源:亿信华辰浏览量:93次
-
数据治理—各种规模银行的增长之路
银行看到修复数据问题的成本显着上升。无论是建立集成能力以应对老化技术的直接费用,还是监管机构或审计师发现数据问题和评估民事罚款的间接费用……查看详情发布时间:2019.03.27来源:亿信华辰浏览量:61次
-
指标管理实践技能:如何让同一套指标体系展示为不同的树形结构
企业的指标体系的建设和维护工作非常繁杂,指标的数据来源、指标公式的维护、指标数据的更新、指标数据的应用,往往涉及到企业的多个部门,这些部……查看详情发布时间:2021.02.06来源:知乎浏览量:77次
-
主数据管理第一步——识别主数据
主数据管理的目的就是为了确保企业核心数据的准确性、一致性、稳定性,打破数据孤岛,帮助企业高效运转。然而在茫茫数据大海中识别出主数据是一项……查看详情发布时间:2019.10.24来源:亿信华辰浏览量:86次
-
数据湖架构 - 最佳实践指南
实施正确的数据湖架构对于将数据转化为价值至关重要。无论您的数据湖中有多少数据,如果您缺乏有效管理数据、跟踪数据并确保其安全的架构特性,那……查看详情发布时间:2021.06.18来源:亿信数据治理知识库浏览量:94次
-
为什么数据成为新的生产要素,怎么理解
在经济学中,生产要素又称为生产输入,是人们用来生产商品和劳务所必备的基本资源,主要包括土地、劳动、资本、企业家才能和数据。生产要素促进生……查看详情发布时间:2020.11.25来源:知乎浏览量:250次
-
数据治理的坑,你踩过多少?
大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大……查看详情发布时间:2020.06.29来源:CSDN浏览量:113次
-
读懂工业大数据 这篇文章不得不看
工业大数据是互联网、大数据和工业产业结合的产物,是中国制造2025、工业互联网、工业4.0等国家战略在企业的落脚点。……查看详情发布时间:2019.03.27来源:亿信华辰浏览量:93次