您不应该进行数据治理的3个理由

发布时间:2018.12.13来源:数据治理浏览量:0次标签:数据治理

yes or no


今天有很多关于数据治理的讨论。但令人惊讶的是,今天“进行数据治理”的组织数量并不高。在我看来,数据治理是现代数据驱动型企业的必备条件。但我想您的组织决定不进行数据治理有几个原因。


理由#1:组织中的每个人都可以轻松查找数据
到目前为止,许多组织已经投资了某种类型的自助BI或可视化工具。希望这个神奇的工具能够为所有商业用户解锁数据,以便他们能够发现隐藏的见解,将您的公司推向新的竞争高度。他们所需要的只是正确的数据,而智慧的宝石将会溢出。因此,如果您的组织每次都快速找到正确的数据而没有任何问题,那么您可能不需要进行数据治理。


但如果你像我谈到的大多数公司一样,现实远非如此。可能有一些数据高手使用您的自助式BI工具,但最有可能的是大多数人没有。为什么?有几个原因。首先,他们可能找不到数据他们需要做分析。如果他们找不到数据,那么他们可能不会使用该工具,如果有的话。其次,假设他们找到了一些数据,他们可能不知道它意味着什么 - 或者如何找出它意味着什么。如果他们不知道这意味着什么,那么他们可能不会非常使用该工具,如果有的话。第三,假设他们找到数据并知道它意味着什么,他们不知道它是否值得信赖。如果他们不知道他们是否可以信任这些数据,那么(我确定你会看到它的发展方向),如果有的话,他们可能不会非常使用这个工具。


如果这听起来很熟悉,不要灰心。我与之交谈的大多数公司都在同一条船上。他们意识到,要实现自助式商务智能的承诺,他们需要数据治理。他们需要一个数据记录系统,以及一个受管理的数据目录,帮助所有业务用户查找,理解和信任数据。


理由2:你的数据池是原始的
如果你正在阅读这篇博文,那么你很清楚围绕大数据的炒作。可能的情况是,您的组织有一个数据池,其中包含充满竞争优势的数据集。如果您的组织的数据池与高山草甸一样纯净,那么您可能不需要数据治理。


不幸的是,我还没有看到一家公司的数据池几乎是原始的。事实上,大多数数据都填充了相同数据的略微修改版本。真的,这并不奇怪。数据池承诺持有大量结构化和非结构化数据,数据用户可以使用我之前提到的自助服务BI工具访问这些数据。但问题是进入数据池的数据受到污染,并且没有办法防止更多的污染进入那里。然后你拿一些污染的数据,把它与其他污染的数据混合起来,然后创建一个新的数据集......你会看到它的发展方向。


结果是一个充满数据的泥泞湖泊,可能 - 或可能不 - 质量好。如果这听起来像你,再次,你绝对不是一个人。再一次,数据治理可以提供帮助。通过建立治理流程来检查数据,然后将其提取到数据库中,您可以放心,您放入数据池的数据质量很高,并且遵循数据组织设置的规则和标准。而想要使用该数据的用户可以通过受管理的目录轻松找到它以及有关它的所有内容。


理由3:你不需要遵守任何规定 - 永远不会
法规是现代商业的重要组成部分。只要问任何被迫遵守BCBS 239或CCAR的大型银行。并非每个企业都像银行一样受到监管,但是越来越多的监管机构不仅要求提供有关您业务的报告,而且还要求您通过正确的数据证实这些报告是正确的。现在,你可能在想,这不适用于我。所以我不需要做数据治理。


但还有更多比如隐私监管。采用通用数据保护法规(GDPR)例如。这项新法规的重点是保护欧盟公民的个人数据。它具有巨大的影响力 - 如果你在2018年5月25日之前没有遵守规定,那将会产生巨大的影响(认为全球收入的2-4%会受到罚款!)。虽然你可能会想“我是一家美国公司。GDPR不适用于我“ - 再想一想。任何与欧盟公民有业务往来并保留相关信息的公司(即使只是姓名和电话号码)都需要遵守,即使他们不在欧盟。合规的一部分能够表明您正在做正确的事情来保护和保护欧盟公民的个人数据。除了其他方面,您还需要能够显示血统,所有权和访问权限。你猜对了 - 数据治理是证明你掌握个人数据的关键。


因此,如果您在阅读本文之后可以诚实地说:1)您的自助式BI工具取得了巨大的成功,您组织中的每个人都可以随时查找,理解和信任数据,2)您的数据池是原始的和未受污染的3)你永远不需要遵守法规,那么你可能不需要数据治理。但如果这听起来不像你,那么数据治理可能是一个很好的下一步。准备开始了吗?



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 五方面提升银行业数据治理能力

    五方面提升银行业数据治理能力

    银行业面临着数据治理的紧迫需求,应该多措并举提升数据治理能力。……查看详情

    发布时间:2019.11.28来源:知乎浏览量:2次

  • 当前企业的数据治理之困

    当前企业的数据治理之困

    只有确保数据的标准化、规范化、可信可用,才能进一步通过数据运营、数据应用帮助企业实现数据资产管理、发现内部数据问题、发掘数据价值,进而实……查看详情

    发布时间:2020.06.28来源:知乎浏览量:3次

  • 数据质量问题根因分析

    数据质量问题根因分析

    说到数据质量问题的原因,做过BI或数仓项目的小伙伴肯定都知道,这是一个业务和技术经常扯来扯去、互相推诿的问题。在很多情况下,企业都会把数……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:1次

  • 理论之企业数据挖掘成功之道

    理论之企业数据挖掘成功之道

    面对现在海量的、不完整的、模棱两可的数据,运用数据挖掘算法对数据进行查找,找出人们所不知道的、有实用价值的信息,这一过程就是数据挖据。随……查看详情

    发布时间:2019.05.23来源:知乎浏览量:4次

  • 治理,管理和质量角色和责任

    治理,管理和质量角色和责任

    最好的数据治理计划通过减少模糊性,建立明确的问责制以及向所有数据利益相关者传播与数据相关的信息,积极主动地在数据相关问题开始之前采取措施……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:0次

  • 浅析银行业如何做数据治理

    浅析银行业如何做数据治理

    2018年5月,银保监会发布《银行业金融机构数据治理指引》,从数据治理架构、数据管理、数据质量控制、数据价值实现、监督管理等方面规范银行……查看详情

    发布时间:2019.06.14来源:亿信华辰浏览量:3次

  • 什么是元数据?元数据管理的作用是什么?

    什么是元数据?元数据管理的作用是什么?

    为了更好地理解企业拥有的数据,必须访问关联的元数据。 元数据管理帮助您判断数据来自何处,其在不同系统中的位置以及如何使用。元数据用于管理……查看详情

    发布时间:2021.03.31来源:数据治理研究院浏览量:4次

  • 大数据时代不能没有数据治理

    大数据时代不能没有数据治理

    第一个提出大数据时代到来的是全球知名咨询公司麦肯锡,现如今大数据存在于各个行业,受到了人们的重视。现在社会科技告诉发展,信息流通快,使得……查看详情

    发布时间:2019.08.13来源:知乎浏览量:2次

  • 数据中心基于政府数据治理的工作清单

    数据中心基于政府数据治理的工作清单

    随着信息社会不断向纵深发展,数据和信息作为战略性资源的价值正在快速提升。人类社会正在进入数据时代,从关注网络、系统到注重数据,已成为当前……查看详情

    发布时间:2018.09.30来源:数据治理浏览量:0次

  • “数据法治化治理”应平衡安全与发展

    “数据法治化治理”应平衡安全与发展

    数据治理的法治化问题,即对数据治理主体的权利义务的设定及其关系模式之制度安排,应符合法治主义要求。“数据法治化治理”要特别关注合法性。……查看详情

    发布时间:2019.08.02来源:中国人民大学未来法治研究院浏览量:1次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议