释放数据民主:5种数据治理的误解

发布时间:2018.12.25来源:亿信华辰浏览量:141次标签:数据治理

 

什么是数据治理

我相信我们都同意它至少关注找到共同的定义,最多只关注企业治理。然而,快速搜索表明,数据治理的各种定义并存。一个极其宝贵的知识体系,如数据管理知识体系(DMBOK)和各种成熟度模型,使数据管理专业人员能够在复杂的组织中战略性地和操作性地塑造数据治理。然而,如果我们希望所有员工都意识到并最终参与数据治理,那么我们需要将这些专业知识转化为更简单的方法。我并不是说我会在这篇文章中提供所有答案,但我至少会尝试发布一场关于数据民主化的新辩论。

对数据治理的五种误解

我们看看我经常看到的五种对数据治理的误解,以及它们为什么会出现问题。

1. 数据治理是公共定义的已发布存储库。这是数据治理的不完整定义。当然,通用术语表是许多数据治理计划的基础组成部分。但是,如果有一个有意义且透明的流程和响应所有权来维护它,那么存储库只是值得信赖的。信任是实现民主数据治理的重要价值。

2. 数据治理是IT的一个关注点,因此也是由IT管理的。该定义排除了数据治理的业务方面。实际上,IT在权威来源的基础识别和对其血统的验证中起着至关重要的作用。然而,作为消费者的业务在您管理的数据资产的业务环境认证中具有不可避免的作用。

3. 数据治理只是数据质量(DQ)和主数据管理(MDM)。确实,数据质量和MDM是必须受到管理的数据管理活动。然而,DQ和MDM是关于根据可量化维度(如准确性和完整性)找到数据的数学真理。数据治理超越了DQ和MDM,建立了对只有人才有资格的数据的信任。同样,信任作为民主数据治理的基本价值而出现。

4. 数据治理由业务功能分类。您的组织可能非常分散,地理位置分散。然而,这并不意味着您无法在自治子组织之间建立协调的数据治理方法。许多分散和地理分布的组织,如大学和全球银行,已经成功实施了一个共享平台。此外,组织可以通过在全球数据治理的基础上对业务有更广泛的视角来获得竞争优势。

5. 数据治理不为数据消费社区提供任何价值或参与。这个定义显然是错误的。自助式BI工具使越来越多的消费者能够为自己的应用程序生成数据和报告。数据治理策略有助于定义如何使用机密数据以及如何确保数据安全性和质量。如果信任是数据整体治理的一个基本价值,那么它应该建立在所有数据公民的透明度和平等参与的基础上,这些公民必然包括数据的消费者。总而言之,他们是您的哨兵,他们能够以更精细的方式识别数据问题,这是传统监控所无法做到的。

数据治理是关于人的

我们已经研究了哪些数据治理不是,但那么数据治理又是什么呢?数据治理是关于人的。它是关于减少陡峭的学习曲线,以便您可以回答正确的数据问题,并适当地参与澄清答案的过程。数据治理使所有数据公民能够对其不断扩展的数据领域拥有整体视角。

同样,我的科学家看到了两种互补的方法,我相信这些方法可以帮助您起草数据问题:“理解和解释”以及“监控和预测”。

第一种方法将根据以下方面为您的数据领域提供组织理解和解释:

· 范围:定义哪些数据相关,哪些数据不相关。范围限制了您的方法,因此在创建买入时迭代扩大范围非常重要。例如,关键数据元素识别是金融组织中常见的范围界定机制。

· 共性和差异:确定资产的定义,例如策略,规则,业务术语,报告,数据元素和系统。最初,无论范围如何,人们都会为常用资产提供不同的定义。重要的是从流程开始汇总和批准这些资产的定义,或者如果它们在概念上不同,则阐明它们之间的关系:例如,'customer'可以是业务术语的名称以及数据库表。

· 业务可跟踪性:部署流程以建立每个关键资产与业务流程,整体数据质量和相关关键数据元素的关系的可跟踪性。

· 数据沿袭:识别权威数据集,仓库和湖泊,以阐明它们之间的转换。

第二种方法是开始监控和预测流程的未来影响,围绕各种应用找到上述解释。

人民平台

为了实现这些目标,数据社区需要一个由三层组成的协作平台:

1. 一个充当操作系统的平台。它定义了范围(内容),涉及的人员以及他们如何参与资产类型,角色和工作流程。根据所需的应用程序,该平台可被视为一个复杂的事件处理器,触发工作流的雷达网络,促使正确和及时的管家行动和系统操作。

2. 位于平台顶部的管家应用程序。这些应用程序具有指定的用户体验,可以最有效地监视和预测上述应用程序。

3. 对齐的元数据。所有这些应用程序都应该生成对齐的元数据,通过平台的API将数据质量分析到仪表板等各种数据管理应用程序。

加入现在的数据革命!


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理成功的秘诀

    数据治理成功的秘诀

    数据治理(DG)1.0一直在努力实现,但现在DG需要符合通用数据保护法规(GDPR),因此企业需要一种新方法来实现数据治理的成功。……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:158次

  • 数据治理、共享交换、数据仓库、数据中心的关系

    数据治理、共享交换、数据仓库、数据中心的关系

    建数据中心离不开数据,以前设计数据库都是从事务性数据库考虑(做的都是业务系统,思维模式太固定了),没有从数据仓库的角度来统管分析。以下是……查看详情

    发布时间:2019.08.07来源:CSDN浏览量:180次

  • 数据治理和数据发现:实现数据监管实施

    数据治理和数据发现:实现数据监管实施

    企业不断努力利用数据驱动的洞察力或竞争情报,发展组织“数据文化”的概念将获得突出地位。数据和数据分析将继续在未来的全球业务中发挥关键作用……查看详情

    发布时间:2019.09.20来源:知乎浏览量:117次

  • 数字健康治理:21世纪数字经济的管理与战略

    数字健康治理:21世纪数字经济的管理与战略

    数字化健康技术,解决方案和决策方法正在改变医疗保健的提供,重塑患者(和健康消费者)的期望,并为健康计划,卫生系统,信息公司和其他利益相关……查看详情

    发布时间:2018.11.21来源:数字健康治理浏览量:132次

  • 数据治理 定义,挑战和最佳实践

    数据治理 定义,挑战和最佳实践

    数据治理构成了公司范围数据管理的基础,可以有效地使用可信赖的数据。有效的数据管理是一项需要集中控制机制的重要任务。 为了帮助最终用户更……查看详情

    发布时间:2019.02.20来源:数据治理浏览量:158次

  • 政府数据治理的国际经验与启示

    政府数据治理的国际经验与启示

    政府数据治理是当前政府信息管理研究的热点问题,对发达国家政府数据治理经验的总结有助于把握政府数据治理的普遍规律,推动我国政府数据的开发利……查看详情

    发布时间:2018.10.23来源:信息资源管理学报浏览量:143次

  • 询问数据治理专家:我的数据治理计划需要多长时间?

    询问数据治理专家:我的数据治理计划需要多长时间?

    数据治理应该是您正在组织中实现和嵌入的东西,以便它像往常一样成为业务的一部分。出于这个原因,任何与我合作或参加我的培训课程的人都知道,我……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:186次

  • 企业如何建立主数据管理平台让数据增值

    企业如何建立主数据管理平台让数据增值

    90年代中期,ERP兴起并得到快速发展。然而,最早的ERP系统中并没有主数据(Masterdata)的概念,而是被称作基础数据。基础数据……查看详情

    发布时间:2020.08.28来源:知乎浏览量:142次

  • 中小银行数据治理工作所面临的问题

    中小银行数据治理工作所面临的问题

    虽然各银行积极响应监管要求,开展数据治理工作,但《中小银行金融科技发展研究报告(2019)》显示中小银行的数据治理基本处于萌芽期,达91……查看详情

    发布时间:2020.07.09来源:小亿浏览量:163次

  • 数据治理如何解决数据多、杂、乱、差问题?

    数据治理如何解决数据多、杂、乱、差问题?

    许多大数据公司在过去一段时间都得到了较好的发展,但由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理……查看详情

    发布时间:2022.02.21来源:小亿浏览量:279次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议