数据治理准备的五大支柱:组织支持

发布时间:2019.01.24来源:亿信华辰浏览量:4次标签:数据治理


企业领导者必须为其数据治理工作提供组织支持。

时钟倒计时到5月25日通用数据保护法规(GDPR)的生效日期。在最后期限之前,组织需要确保它们已准备好数据治理。

我们将继续关于数据治理五大支柱(DG)的博客系列。今天,我们将探索数据治理,组织支持的第二个支柱,以及为什么它对确保DG成功至关重要。

在现代的,数据驱动的商业世界中,数据是组织最宝贵的资产,成功的组织也是如此。在这方面,我们可以将数据治理视为资产维护的一种形式。

例如,在生产设施中采用生产线。组织了解设备维护是一个重要且持续的过程。他们要求使用设备的员工接受适当的培训,确保其清洁,安全,并在不滥用的情况下正常工作。

他们这样做是因为他们知道维护可以防止,或者至少推迟维修,这可能代价高昂,并导致停机时收入损失。

组织支持:信息生产线

尽管数据具有无形性质,但可以而且应该应用相同的维护实物资产的想法。毕竟,数据驱动的业务本质上是数据生产线的信息。数据通过管道/组织创建和移动,最终带来收入。

在这方面 - 与生产线上的机器和使用它的人一样 - 每个使用数据的人都应该参与维护和管理它。

数据治理不善会导致生产线维护不善等类似问题。如果没有妥善保管,那么整个业务的影响就会渗透。

如果DG计划失败,数据发现将变得更加困难,从而减慢数据在管道中的行程。

业务术语表中的不一致导致数据单元具有较差或没有上下文。这又导致相关用户不知道如何组合以创建值得使用的信息的数据单元。

此外,也许最令人讨厌的是,如果组织的权限系统管理不善,那么错误的人就可以访问数据。这可能导致未经批准的变更,或者根据GDPR,严重的罚款 - 最终减少客户信任,股价下跌和失去光泽的品牌。

Facebook及时提醒我们,如果数据治理的重要性被低估,那么数据治理的重要性和潜在的影响范围。Facebook对第三方供应商如何使用和使用其数据缺乏了解,将其置于热门公关水中(简而言之)。

报告显示有5000万用户受到影响,虽然这远远不及历史上最大的泄漏(甚至在最近的历史中,见:Equifax),但它证明了数据泄露的声誉损害是广泛的。随着GDPR的快速临近,这一成本只会升级。

至少,组织需要证明他们已采取必要措施来防止此类违规行为。这需要了解他们当前拥有的数据,位置以及具有访问权限的任何第三方如何使用它们。这就是数据治理的用武之地,但要使其发挥作用,许多组织需要进行文化变革。

文化的变迁

促进组织对数据治理的支持可能需要改变组织文化。

这一点在仅采用数据治理1.0方法的组织中尤为明显,在这种方法中,DG从更广泛的组织中分离出来并被视为“IT问题”。这种方法否认数据治理计划需要在数据中运行所需的业务环境驱动的组织。

数据治理主要基于三个知识体系:数据字典,业务术语表和数据使用目录。要使这三个知识体系完整,他们需要更广泛的业务投入。

实际上,无数过去的DG实施失败案例可归因于缺乏组织数据治理支持的组织。

例如,让IT部门记录和组装业务术语表自然会导致不一致。在这种情况下,IT部门的任务是为他们通常不了解的术语创建业务术语表,不了解其背景,或者不认识应用程序或其含义。

这种方法先发制人地推动了这一举措,从一开始就排除了成熟数据治理举措的增值效益。

在erwin的2018年“数据治理状况报告”中,它发现IT部门继续为40%的组织负责数据治理。数据治理预算来自20%的组织的审计和合规职能,而企业仅在调查的公司中占8%。

为了避免上述陷阱,企业领导者需要在整个组织中灌输数据治理文化。这意味着将DG视为一项战略举措,并通过固有的组织和财务支持作为一项持续的实践进行投资。

为此,组织倾向于高估可以衡量的事物,并低估无法衡量的事物。大多数组织都希望量化数据治理的价值。作为文化转变的一部分,组织应为企业数据治理计划制定业务案例,其中包括ROI计算。

通过将其投资限制在部门预算中,数据治理必须与其他部门的优先事项相抗衡。作为一项长期举措,它往往会失去短期收益。

当然,这意味着企业领导者需要大量投资并参与数据治理本身 - 本身就是数据治理准备的支柱

理想情况下,组织应实施协作数据治理解决方案,以促进使DG工作所需的组织范围内的工作。

在实现跨部门协作的意义上协作,以便整个组织的数据资产可以被考虑,但也意味着它与使数据治理有效和可持续的其他工具一起工作 - 例如,企业架构,数据建模和业务处理。

我们将这种无所不包的方法称为“企业数据治理体验”或“EDGE”。它是Data Governance 2.0方法,旨在反映如何在现代企业中使用数据,以实现更好的控制,上下文,协作和价值创造。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 统一数据交换平台解决方案

    统一数据交换平台解决方案

    随着我国信息化工程建设的迅速发展,各政府部门及各大企业内部都建立了各自的信息处理系统。这些信息系统往往是在不同时期、由不同厂商、在不同平……查看详情

    发布时间:2020.08.07来源:知乎浏览量:3次

  • 大数据对社会有多大用处?

    大数据对社会有多大用处?

    规范性分析是商业智能(BI)中使用的四种大数据类型之一。大数据是一个描述大量数据的术语-结构化和非结构化-这些大量数据淹没了企业或任何数……查看详情

    发布时间:2018.12.29来源:数据治理浏览量:1次

  • 数据治理到底是什么?

    数据治理到底是什么?

    幸运的是,培训可以为精通数据的员工提供这些技能。通过正确的沟通工作,您的数据治理团队可以开展治理业务,确信他们能够为您的各种数据利益相关……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:3次

  • 数字化时代的大数据治理应该怎么做呢?

    数字化时代的大数据治理应该怎么做呢?

    随着时代的发展,各个企业收集数据的渠道越来越多样化,也有越来越多的企业开始应用大数据来创造价值,为了合理有效的挖掘数据资源来源的价值,首……查看详情

    发布时间:2019.07.18来源:知乎浏览量:1次

  • 治理与管理的区别

    治理与管理的区别

    简而言之,董事会负责监督,规划和管理负责日常运营。每个部分的职责和责任细分更为广泛。无论您采用广泛还是狭隘的方法来处理治理和管理之间的差……查看详情

    发布时间:2019.03.15来源:亿信华辰浏览量:1次

  • 数据治理的重点领域:关注数据质量

    数据治理的重点领域:关注数据质量

    由于数据质量,完整性或可用性方面的问题,这种类型的程序通常会出现。……查看详情

    发布时间:2019.03.29来源:亿信华辰浏览量:2次

  • 如何做好数据治理工作-数据治理之“术”

    如何做好数据治理工作-数据治理之“术”

    数据治理是一项长期、复杂的系统工程,要在组织、机制和标准等方面加强统筹谋划。……查看详情

    发布时间:2020.01.03来源:知乎浏览量:2次

  • 数据质量管理方法

    数据质量管理方法

    数据质量闭环管理机制以制定规则、问题发现、质量剖析、数据清理、评估验证、持续监控为核心活动,又结合银行的数据实践进行了定制和优化。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:4次

  • 数据管理和物联网

    数据管理和物联网

    数十亿带传感器的东西环绕着人们和他们的生活。这些物联网(IoT)与人,家庭,工厂,工作场所,城市,农场和车辆互动。Gartner预测,到……查看详情

    发布时间:2019.02.20来源:亿信华辰浏览量:2次

  • 数据治理和数据管理不可互换

    数据治理和数据管理不可互换

    从什么时候开始数据管理和数据治理可以互换? 这个问题让我感到困惑和沮丧。追求数据管理供应商与业务利益相关者建立联系,因为业务部门在决策……查看详情

    发布时间:2018.11.20来源:Michele Goetz浏览量:1次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议