数据治理的血缘分析

发布时间:2019.11.22来源:CSDN浏览量:196次标签:数据治理

数据治理里经常提到的一个词就是血缘分析,血缘分析是保证数据融合(聚合)的一个手段,通过血缘分析实现数据融合处理的可追溯。

有时被概念瞎蒙了,不知道到底如何追溯,落不了地。本人接触的数据治理项目还主要是将各个来源的数据进行整理融合,形成人地事物组织几个业务大类数据。至于详细的ODS、DWD、DWA等数据组织请阅读这篇文章:


数据治理概述
本文主要从数据追溯的业务需求来分析一下,一切还是要从需求出发,这里的数据处理都是Oracle关系数据库之间的融合,血缘分析就划分为表结构血缘分析和记录级的血缘分析;这两类业务场景:

表结构血缘分析
表结构血缘分析
针对表结构的情况,最终用户和运维用户最需要关注,目标表的每个字段的数据来源有哪些?也就是建立一个源表、源字段和目标表、目标字段的映射关系,一个目标表可以对应多个来源表的字段,比如:姓名字段,可能来至于户籍人口表也可能来至于流动人口表或老年人表,也就是意味着这三张表合并起来的人口,才是这个区域的所有人口.
通过上图我们就可以清楚的看到从目标表的目标字段出发,知道数据库中数据处理的规则,清楚的了解每个字段数据的来源。
至于其中ODS、DWD、DWA的关系,参照上面所述先去了解。

记录级血缘分析
记录级血缘分析
记录级的血缘分析,就是从当前记录出发可以按时间查看该记录所有的变更过程。一条记录的生成可能原始对应两个表的两条记录,这种是要追溯跟踪的。
如果再精细跟踪,就可以做到字段级的血缘分析,与表结构的血缘分析就可以完美呼应。
单击某一个字段,可查看该字段的血缘关系;一个是以此字段为目标的血缘追溯,一个是以此字段为源的血缘追溯
这里就要看具体应用需求来定,毕竟做的越精细实现方案会越复杂。
血缘分析毕竟解决的问题是数据出了错之后能明确知道是哪一步环节的哪个原始数据出问题了,所以一般到记录级就基本可以进行追溯跟踪了。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 银行自身要提升数据治理能力

    银行自身要提升数据治理能力

    数字经济对金融服务的模式也提出了新的要求,银行必须依托科技支撑,加快和深化数字化转型,带动风控模式的改革创新。银行还需要着力于构建其自身……查看详情

    发布时间:2019.10.29来源:知乎浏览量:205次

  • 大数据时代还需要数据治理吗?

    大数据时代还需要数据治理吗?

    第一个提出大数据时代到来的是全球知名咨询公司麦肯锡,现如今大数据广泛存在于政府,军事,金融,企业,医疗,制造业,电力等行业,备受关注。……查看详情

    发布时间:2019.08.15来源:知乎浏览量:131次

  • 数据治理到底是什么?

    数据治理到底是什么?

    幸运的是,培训可以为精通数据的员工提供这些技能。通过正确的沟通工作,您的数据治理团队可以开展治理业务,确信他们能够为您的各种数据利益相关……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:192次

  • 银行数据治理-数据治理是银行业面对的一个崭新课题

    银行数据治理-数据治理是银行业面对的一个崭新课题

    本书是“银行业信息化丛书”之一,数据治理是银行业面对的一个崭新课题,本书从银行业数据基本概况、数据治理现状,以及银行业数据治理体系、数据……查看详情

    发布时间:2018.11.29来源:数据治理浏览量:172次

  • 数据治理的关键要求是什么?

    数据治理的关键要求是什么?

    这些功能中的每一项都可以实现受管理的环境 目录和数据字典元数据的组合为数据策略和使用的可审计性提供了完整的信息。它还包含血统和操纵。工作……查看详情

    发布时间:2019.03.20来源:亿信华辰浏览量:134次

  • 电力数据治理方案如何实施?要注意什么?

    电力数据治理方案如何实施?要注意什么?

    电力行业数据治理痛点,包括整体架构缺乏统一的数据中心,孤岛现象严重;数据治理方面缺乏统一的数据标准和数据质量关系;电力数据治理方案如何实……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:644次

  • 数据平台,数据中台是什么数据?

    数据平台,数据中台是什么数据?

    数据中台最核心的就是data API,它提供一个一个的可以复用的标准,这种数据服务给到业务系统。构建数据中台和构建数据平台也有很大的区别……查看详情

    发布时间:2021.01.23来源:知乎浏览量:132次

  • 2019年需要关注的三个治理趋势

    2019年需要关注的三个治理趋势

    通过精心应用RPA,优先考虑数据质量,并迎合不断变化的劳动力构成,数据专业人员可以有效地指导他们的组织进入数据驱动的未来。……查看详情

    发布时间:2018.12.20来源:亿信华辰浏览量:115次

  • 数据质量及数据质量管理一个较全面的介绍

    数据质量及数据质量管理一个较全面的介绍

    很多企业数据项目的失败归根结底都是数据质量不高造成的。数据质量不高已经成为困扰此类项目的开发人员与用户的一个严重问题。为了提高大家对数据……查看详情

    发布时间:2020.01.09来源:CSDN浏览量:143次

  • 数据治理 VS 数据管理!

    数据治理 VS 数据管理!

    与早期的数字化原生企业相比,不进行数据管理或治理的企业将面临着严重的后果 。至于说到良好的数据管理和应用的实践,大多数人只会将这个词与那……查看详情

    发布时间:2022.06.15来源:互联网浏览量:230次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议