数据治理的血缘分析

发布时间:2019.11.22来源:CSDN浏览量:195次标签:数据治理

数据治理里经常提到的一个词就是血缘分析,血缘分析是保证数据融合(聚合)的一个手段,通过血缘分析实现数据融合处理的可追溯。

有时被概念瞎蒙了,不知道到底如何追溯,落不了地。本人接触的数据治理项目还主要是将各个来源的数据进行整理融合,形成人地事物组织几个业务大类数据。至于详细的ODS、DWD、DWA等数据组织请阅读这篇文章:


数据治理概述
本文主要从数据追溯的业务需求来分析一下,一切还是要从需求出发,这里的数据处理都是Oracle关系数据库之间的融合,血缘分析就划分为表结构血缘分析和记录级的血缘分析;这两类业务场景:

表结构血缘分析
表结构血缘分析
针对表结构的情况,最终用户和运维用户最需要关注,目标表的每个字段的数据来源有哪些?也就是建立一个源表、源字段和目标表、目标字段的映射关系,一个目标表可以对应多个来源表的字段,比如:姓名字段,可能来至于户籍人口表也可能来至于流动人口表或老年人表,也就是意味着这三张表合并起来的人口,才是这个区域的所有人口.
通过上图我们就可以清楚的看到从目标表的目标字段出发,知道数据库中数据处理的规则,清楚的了解每个字段数据的来源。
至于其中ODS、DWD、DWA的关系,参照上面所述先去了解。

记录级血缘分析
记录级血缘分析
记录级的血缘分析,就是从当前记录出发可以按时间查看该记录所有的变更过程。一条记录的生成可能原始对应两个表的两条记录,这种是要追溯跟踪的。
如果再精细跟踪,就可以做到字段级的血缘分析,与表结构的血缘分析就可以完美呼应。
单击某一个字段,可查看该字段的血缘关系;一个是以此字段为目标的血缘追溯,一个是以此字段为源的血缘追溯
这里就要看具体应用需求来定,毕竟做的越精细实现方案会越复杂。
血缘分析毕竟解决的问题是数据出了错之后能明确知道是哪一步环节的哪个原始数据出问题了,所以一般到记录级就基本可以进行追溯跟踪了。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业如何建立主数据管理平台让数据增值

    企业如何建立主数据管理平台让数据增值

    90年代中期,ERP兴起并得到快速发展。然而,最早的ERP系统中并没有主数据(Masterdata)的概念,而是被称作基础数据。基础数据……查看详情

    发布时间:2020.08.28来源:知乎浏览量:184次

  • 数据治理为什么成为企业必备?

    数据治理为什么成为企业必备?

    基本概念什么是数据治理?答:又叫”数据管控”。引用《DAMA数据管理知识体系指南》一书给出的定义:数据治理是对数……查看详情

    发布时间:2020.07.29来源:CSDN浏览量:171次

  • Informatica把AI带到了数据治理、数据治理和数据治理的合规性。

    Informatica把AI带到了数据治理、数据治理和数据治理的合规性。

    随着欧盟制定新隐私规定的最后期限越来越近,企业需要掌握数据的来源。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:155次

  • 说到数据治理,我们不得不要谈到的要素和落地方法

    说到数据治理,我们不得不要谈到的要素和落地方法

    据戴尔易安信最新调查显示:全球大多数企业现已认识到数据的价值,受管理的平均数据量从2016年的1.45PB增加至2018年的9.70PB……查看详情

    发布时间:2020.06.29来源:CSDN浏览量:151次

  • 怎么做好数据管理——亿信华辰

    怎么做好数据管理——亿信华辰

    数据化管理是指将业务工作通过完善的基础统计报表体系、数据分析体系进行明确计量、科学分析、精准定性,以数据报表的形式进行记录、查询、汇报、……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:124次

  • 简明扼要的数据治理指南

    简明扼要的数据治理指南

    数据收集是企业执行的最重要的功能之一。通过获取有关您的客户,员工,财务等的数据,您可以确保轻松,可靠地访问有助于指导主要业务决策的信息。……查看详情

    发布时间:2019.07.04来源:知乎浏览量:133次

  • 数据治理—构建你的数据屏障

    数据治理—构建你的数据屏障

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.06.28来源:知乎浏览量:131次

  • 如今企业面临哪些数据湖管理挑战?

    如今企业面临哪些数据湖管理挑战?

    成功的数据治理方案涉及部署策略、标准和流程,以在整个企业中有效正确地利用高质量数据。如果你的企业具有数据湖环境,并希望从中获得高质量的分……查看详情

    发布时间:2020.04.02来源:知乎浏览量:137次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.11.20来源:数据治理浏览量:124次

  • 银行数据质量管理方法研究与实践

    银行数据质量管理方法研究与实践

    伴随外部监管要求逐步提高以及市场竞争环境的日益激励,银行对于数据价值的重视提升到了前所未有的高度,数据对于银行来说已经成为一项重要的资产……查看详情

    发布时间:2019.02.21来源:知乎浏览量:171次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议