企业数据治理项目中影响数据质量的5个因素

发布时间:2020.04.08来源:知乎浏览量:144次标签:数据治理

数据质量包括数据质量控制和数据治理
数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

一个战略性和系统性的方法能帮助企业正确研究企业的数据质量项目,业务部门与 IT 部门的相关人员将各自具有明确角色和责任,配备正确的技术和工具,以应对数据质量控制的挑战。

数据质量反映的是数据的“适用性(fitness for use)”,即数据满足使用需要的合适程度。数据质量通过完整性、一致性、准确性、及时性、合法性等多类维度对数据进行度量。数据质量管理的目的是为企业提供洁净、结构清晰的数据,是企业开发业务系统、提供数据服务、发挥数据价值的必要前提,是企业数据资产管理的前提。

数据质量问题的影响因素
1、数据质量方面原因——数据不一致
企业早期没有进行统一规划设计,大部分信息系统是逐步迭代建设的,系统建设时间长短各异,各系统数据标准也不同。企业业务系统更关注业务层面,各个业务系统均有不同的侧重点,各类数据的属性信息设置和要求不统一。另外,由于各系统的相互独立使用,无法及时同步更新相关信息等各种原因造成各系统间的数据不一致,严重影响了各系统间的数据交互和统一识别,基础数据难以共享利用,数据的深层价值也难以体现。

2、数据质量方面原因——数据不完整
由于企业信息系统的孤立使用,各个业务系统或模块按照各自的需要录入数据,没有统一的录入工具和数据出口,业务系统不需要的信息就不录,造成同样的数据在不同的系统有不同的属性信息,数据完整性无法得到保障。

3、数据质量方面原因——数据不合规
没有统一的数据管理平台和数据源头,数据全生命周期管理不完整,同时企业各信息系统的数据录入环节过于简单且手工参与较多,就数据本身而言,缺少是否重复、合法、对错等校验环节,导致各个信息系统的数据不够准确,格式混乱,各类数据难以集成和统一,没有质量控制导致海量数据因质量过低而难以被利用,且没有相应的数据管理流程。

4、数据质量方面原因——数据不可控
海量数据多头管理,缺少专门对数据管理进行监督和控制的组织。企业各单位和部门关注数据的角度不一样,缺少一个组织从全局的视角对数据进行管理,导致无法建立统一的数据管理标准、流程等,相应的数据管理制度、办法等无法得到落实。同时,企业基础数据质量考核体系也尚未建立,无法保障一系列数据标准、规范、制度、流程得到长效执行。

5、数据质量方面原因——数据冗余
各个信息系统针对数据的标准规范不一、编码规则不一、校验标准不一,且部分业务系统针对数据的验证标准严重缺失,造成了企业顶层视角的数据出现“一物多码”、“一码多物”等现象。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的目的和意义

    数据治理的目的和意义

    ​在"新基础设施"和疫情等外部因素的推动下,数字化转型正对越来越多的行业而言变得重要且紧急。如何更好地利用数据已经成为企业数字化转型的关……查看详情

    发布时间:2022.06.09来源:小亿浏览量:1124次

  • 数据治理的数据架构:主动方法

    数据治理的数据架构:主动方法

    “数据架构是业务战略的物理实现,” 全球数据战略有限公司 EMEA首席顾问Nigel Turner在DATAVERSITY® 企业数据治……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:151次

  • 元数据管理在数据仓库中的应用

    元数据管理在数据仓库中的应用

    随着业务系统每年收集和使用的数据飞速增长,数据体量日趋增长,数据形态多样化且不统一,多种数据源之间的采集、传播和共享遇到困难。元数据管理……查看详情

    发布时间:2022.05.06来源:小亿浏览量:225次

  • 应用系统的数据治理一些关注点

    应用系统的数据治理一些关注点

    现在互联网公司业务发展都是非常飞速,当业务发展到一定规模,就得考虑如何去做服务治理,大家的重心一般放在微服务的应用架构设计层面,往往比……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:216次

  • 用大数据助力治理现代化

    用大数据助力治理现代化

    “要运用大数据提升国家治理现代化水平”“要建立健全大数据辅助科学决策和社会治理的机制,推进政府管理和社会治理模式创新”,习近平总书记的重……查看详情

    发布时间:2019.10.17来源:知乎浏览量:116次

  • 大数据技术学习,深度挖掘大数据的现状分析

    大数据技术学习,深度挖掘大数据的现状分析

    企业级技术 = 艰苦的工作 其实大数据有趣的是它不是直接可以炒作的东西。 能够获得广泛兴趣的产品和服务往往是那些人们可以触摸……查看详情

    发布时间:2019.03.20来源:亿信华辰浏览量:173次

  • 我国数据资产管理的现状

    我国数据资产管理的现状

    我国数据资产管理市场发展的主要推动来自政府和大型互联网公司。在国家层面上,正在以政务信息和政府数据管理为切入口,由上至下地推动数据资产管……查看详情

    发布时间:2020.09.11来源:知乎浏览量:223次

  • 解锁数据治理:亿信华辰的数据治理工具引领风潮

    解锁数据治理:亿信华辰的数据治理工具引领风潮

    在数字化飞速发展的时代,数据已成为企业的重要资产。然而,如何有效管理和利用这一资产,确保数据的质量、安全性和合规性,是企业面临的挑战。亿……查看详情

    发布时间:2023.09.27来源:浏览量:169次

  • 数据治理面对的挑战有哪些

    数据治理面对的挑战有哪些

    随着企业数据量的增长,大数据平台需要投资扩容,但大量的存量应用依赖的数据也在同步增长,因此也需要扩容,当然这份冗余的数据会越来越大。……查看详情

    发布时间:2022.05.07来源:小亿浏览量:257次

  • 数据治理中元数据的作用

    数据治理中元数据的作用

    数据治理中元数据的作用主要体现在以下几方面:便捷的业务导航,提高数据质量,工作更高效,降低培训成本,消除知识不对称,高效精准沟通,降低数……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:134次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议