企业数据治理项目中影响数据质量的5个因素

发布时间:2020.04.08来源:知乎浏览量:156次标签:数据治理

数据质量包括数据质量控制和数据治理
数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

一个战略性和系统性的方法能帮助企业正确研究企业的数据质量项目,业务部门与 IT 部门的相关人员将各自具有明确角色和责任,配备正确的技术和工具,以应对数据质量控制的挑战。

数据质量反映的是数据的“适用性(fitness for use)”,即数据满足使用需要的合适程度。数据质量通过完整性、一致性、准确性、及时性、合法性等多类维度对数据进行度量。数据质量管理的目的是为企业提供洁净、结构清晰的数据,是企业开发业务系统、提供数据服务、发挥数据价值的必要前提,是企业数据资产管理的前提。

数据质量问题的影响因素
1、数据质量方面原因——数据不一致
企业早期没有进行统一规划设计,大部分信息系统是逐步迭代建设的,系统建设时间长短各异,各系统数据标准也不同。企业业务系统更关注业务层面,各个业务系统均有不同的侧重点,各类数据的属性信息设置和要求不统一。另外,由于各系统的相互独立使用,无法及时同步更新相关信息等各种原因造成各系统间的数据不一致,严重影响了各系统间的数据交互和统一识别,基础数据难以共享利用,数据的深层价值也难以体现。

2、数据质量方面原因——数据不完整
由于企业信息系统的孤立使用,各个业务系统或模块按照各自的需要录入数据,没有统一的录入工具和数据出口,业务系统不需要的信息就不录,造成同样的数据在不同的系统有不同的属性信息,数据完整性无法得到保障。

3、数据质量方面原因——数据不合规
没有统一的数据管理平台和数据源头,数据全生命周期管理不完整,同时企业各信息系统的数据录入环节过于简单且手工参与较多,就数据本身而言,缺少是否重复、合法、对错等校验环节,导致各个信息系统的数据不够准确,格式混乱,各类数据难以集成和统一,没有质量控制导致海量数据因质量过低而难以被利用,且没有相应的数据管理流程。

4、数据质量方面原因——数据不可控
海量数据多头管理,缺少专门对数据管理进行监督和控制的组织。企业各单位和部门关注数据的角度不一样,缺少一个组织从全局的视角对数据进行管理,导致无法建立统一的数据管理标准、流程等,相应的数据管理制度、办法等无法得到落实。同时,企业基础数据质量考核体系也尚未建立,无法保障一系列数据标准、规范、制度、流程得到长效执行。

5、数据质量方面原因——数据冗余
各个信息系统针对数据的标准规范不一、编码规则不一、校验标准不一,且部分业务系统针对数据的验证标准严重缺失,造成了企业顶层视角的数据出现“一物多码”、“一码多物”等现象。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的四点好处

    数据治理的四点好处

    大数据现在越来越广泛地应用在我们的日常生活当中,随着企业业务的发展,数据的来源、种类变得越来越多样化,系统改造或重新设计的难度就越大,所……查看详情

    发布时间:2022.02.22来源:小亿浏览量:225次

  • 企业如何快速启动数据治理项目呢?

    企业如何快速启动数据治理项目呢?

    企业在运营的过程中通常都会产生各种各样的数据问题,例如各部门数据不一致,导致汇总部门工作效率低,数据错误从而导致做出错误的判断等等,因此……查看详情

    发布时间:2019.07.29来源:头条浏览量:156次

  • 物联网中的安全与数据治理到底怎么做?

    物联网中的安全与数据治理到底怎么做?

    如果企业和公共部门机构要启动成功的物联网项目,确保物联网系统和智能设备的用户保持安全,这要求他们的数据受到保护和谨慎管理至关重要。用户的……查看详情

    发布时间:2019.06.21来源:知乎浏览量:120次

  • 企业适用的数据标准管理平台

    企业适用的数据标准管理平台

    数据标准化的过程其实就是在数据整合平台实现数据标准,并将各个系统产生的数据通过清洗、转换加载到整合平台的数据模型中,实现数据标准化的过程……查看详情

    发布时间:2020.05.08来源:知乎浏览量:175次

  • 数据治理成功的预测指标

    数据治理成功的预测指标

    简而言之,数据治理项目在组织内经常遇到的挑战通常与高级管理层和业务中的数据文化状态密切相关。从这两个利益相关方团体获得支持可以显着提高数……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:176次

  • 银行数据治理工作的落地面临着众多的困难与挑战

    银行数据治理工作的落地面临着众多的困难与挑战

    数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情

    发布时间:2020.07.09来源:小亿浏览量:134次

  • 物料主数据管理平台建设分享,助力多元化集团探索数据治理之路

    物料主数据管理平台建设分享,助力多元化集团探索数据治理之路

    随着大数据平台的建设,数据质量的好坏直接决定数据分析和数据挖掘的效果。如今,企业数据资产面临着不一致、不完整、不准确等问题,需要对数据进……查看详情

    发布时间:2021.04.20来源:浏览量:270次

  • 数据清洗与数据治理的3个不同点

    数据清洗与数据治理的3个不同点

    ​数据清洗,是指发现并纠正数据文件中可识别的错误的最后一道程序,是数据治理工作中必不可少的一项关键任务,是数据治理的子集.……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:1217次

  • 新的独立全球分析师研究强调数据治理挑战

    新的独立全球分析师研究强调数据治理挑战

    佛罗里达州奥兰多,10月14日-交付 分析的未来,Pentaho的,一个日立数据系统公司今天宣布,由Forrester咨询公司进行的2……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:142次

  • 什么是元数据?为何需要元数据?

    什么是元数据?为何需要元数据?

    元数据是对我们整个系统里面包含的各种结构的描述和说明,比如结构说明、属性说明、或者相关数据,它有点类似现实世界中我们使用的某个产品的说明……查看详情

    发布时间:2019.09.09来源:知乎浏览量:168次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议