主数据管理对生产率改善、风险管理、成本降低等方面均有显著的好处

发布时间:2020.09.03来源:知乎浏览量:138次标签:数据治理

什么是MDM(Master Data Management)?
主数据管理是旨在创建和维护权威、可靠、可持续、准确、及时和安全的环境的过程和技术框架。这个环境代表了一个单一版本的事实,作为跨不同的系统、业务单元和用户社区的可接受的记录系统。

尽管MDM不是新的,但是最近人们对开发MDM解决方案的兴趣大增。这是因为跨广泛行业的组织的战略和战术需求。这种趋势的一些关键驱动因素是诸如GPDR、Sarbanes-Oxley Act和HIPAA等法规的遵从性。

主数据管理还使组织能够更好地关注以客户为中心的活动,更好地洞察客户的目标、需求、能力和要求额外产品和服务的倾向。如果执行正确,这可以增加交叉销售和追加销售的收入机会,并改善整体客户体验。

MDM的好处
在IT领域内有一股实施MDM的驱动力。通常情况下,应用程序是为支持某个业务领域的运营过程而设计的,它们拥有自己的信息技术设施,包括与应用相关的数据存储和定义。结果是:信息共享越多,我们越是发现多年来横跨业务线的分布式计算和应用已经形成了“信息孤岛”。 当依赖应用的Master Data的拷贝数量不断增加时,通过点对点连接方式同步数据会变得很复杂,整个环境也变得很难维护。与此同时,很难控制信息的一致性和数据的质量了。

像其他重要的IT趋势,MDM对生产率改善、风险管理、成本降低等方面均有显著的好处。更加准确得讲,MDM通过支持依赖以下益处的业务项目来证明自己的价值:

1. 全面的客户知识
内部开发各种应用系统经常会采用不同的方式支持相同类型的客户数据功能。例如某银行可能有多种客户接触界面:支行、ATM、MAIL、Internet、电话和短信。其中的任意一个应用均会创建、更新和停用客户信息。但是在一个相互不协作的环境下,应用就无法知道准确全面的客户信息,包括:唯一客户的数量、客户与银行交互的喜好、客户是如何尝试不同的途径来完成交易的。单一的MasterData存储为所有客户的活动数据提供了单一的来源,采用统一的方式支持各种运营和分析应用。 如果一个企业拥有了完整一致的客户视图,便能提供更加丰富的个性化服务和恰当的处置。这样便能产生更好的客户体验,降低客户流失率。

2. 增强竞争力
在资源有限的情况下,企业需要快速产生新的业务能力,迅速抓住新的商业机会。MDM降低了集成新数据和系统的复杂性,因此能有利于提高企业的敏捷性和竞争力。

3. 改进运营效率,降低成本
复制相同的数据经常带动复制相关的管理数据的活动,包括:典型的日常数据管理工作(备份和维护)、增加设施的license成本(比如RDBMS, ETL产品的license和维护成本),特定的应用工具和服务。统一的数据视图能让企业降低重复出现的运营成本和任务。

4. 一致的报表
报表间的不一致源自信息处理流程的治理缺乏和各环节上有差异的复制和复杂转换。受治理的使用MasterData的信息处理过程能降低报表间的不一致。

5. 提高信息质量
由标准化模型、数值域(valuedomain)和商业规则等组成的元数据能帮助企业更加有效地监控跨越多个垂直应用的信息质量控制情况,降低信息的碎块化和重复劳动。

6. 提高实施速度
MDM提供了信息资产的标准化视图,这减少了抽取和转换数据的延迟, 加速了各种项目的实施进度:应用迁移、系统升级、数据仓库(datawarehouse)/数据集市(datamart)。

7. 简化应用系统开发
MDM的合并工作不仅仅限制在数据领域。当多个MasterData Object合并到一个主存储(MasterRepository)时,就会有可能合并与数据的生命周期相关的应用系统的功能。例如,一个企业中可能会有多个系统负责录入新产品数据到不同的产品数据库,可以把这些产品管理功能合并,提供单一创建新产品功能服务,让不同的应用调用。引入类似的数据服务层为SOA构架提供了必要的抽象。

8. 更好的费用分析和规划
与产品和供应商等相关的MasterData 能够帮助企业改进以下工作:采购工作、协调竞争性的外包(competitivesourcing)、预测未来的费用、改进供应商管理 等等。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业数据资产管理应该如何做?

    企业数据资产管理应该如何做?

    定义与提出:国外对“数据资产管理”的定义为:数据资产管理是规划、控制和提供数据及信息资产的一组业务职能,包括开发……查看详情

    发布时间:2020.08.14来源:知乎浏览量:160次

  • 一文透露银行业的数据治理该不该做,又怎么做?

    一文透露银行业的数据治理该不该做,又怎么做?

    小宋最近同学会,一个大学同学就职银行信息科技部门,听说小宋也在一家大数据公司便拉起小宋的手要和她好好掰扯掰扯一下银行业的数据治理了。银行……查看详情

    发布时间:2020.07.29来源:今日头条浏览量:127次

  • 数据治理运营:团队

    数据治理运营:团队

    这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原……查看详情

    发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:135次

  • 一分钟了解企业主数据系统建设,成功化数据为价值。

    一分钟了解企业主数据系统建设,成功化数据为价值。

    “在数据治理的相关资料中,提到了一个概念,叫‘主数据’,究竟什么是主数据,它的收益又在哪?”之所以具有代表性,是因为这是一个典型的企业人……查看详情

    发布时间:2020.08.28来源:知乎浏览量:156次

  • 试论加强数据治理能力的重要性

    试论加强数据治理能力的重要性

    网络信息资源,是指所有以电子数据形式存储在信息光、磁等非纸质的文字、图像、声音、动画等多种形式的载体中,并通过网络通信、计算机或终端等方……查看详情

    发布时间:2018.12.05来源:网络传播杂志浏览量:143次

  • 打破数据治理:数据质量

    打破数据治理:数据质量

    任何数据驱动的计划的成功取决于该数据是否相关且值得信赖。随着越来越多的大学将数据视为负责任的战略规划和计划的关键,许多人都意识到:有些数……查看详情

    发布时间:2019.07.11来源:知乎浏览量:154次

  • 您不应该进行数据治理的3个理由

    您不应该进行数据治理的3个理由

    今天有很多关于数据治理的讨论。但令人惊讶的是,今天“进行数据治理”的组织数量并不高。在我看来,数据治理是现代数据驱动型企业的必备条件。但……查看详情

    发布时间:2018.12.13来源:数据治理浏览量:121次

  • 多措并举提升银行业数据治理能力

    多措并举提升银行业数据治理能力

    数据治理是银行业高质量发展的必由之路,当前银行业的数字化转型面临一些挑战和不足,要从建立数据治理架构、统一数据标准、加强数据分析应用等方……查看详情

    发布时间:2019.11.29来源:知乎浏览量:160次

  • 数据治理与数据质量的关系

    数据治理与数据质量的关系

    单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论……查看详情

    发布时间:2018.11.29来源:知乎浏览量:216次

  • 企业怎样建立完整的数据治理体系?

    企业怎样建立完整的数据治理体系?

    大数据智能时代,管理不再是传统的做法,一套完善的数据管理体系是企业长远要生存的必须择决。我们的生活已经离不开大数据,企业的数据管理不仅能……查看详情

    发布时间:2020.03.26来源:知乎浏览量:115次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议