主数据管理对生产率改善、风险管理、成本降低等方面均有显著的好处

发布时间:2020.09.03来源:知乎浏览量:139次标签:数据治理

什么是MDM(Master Data Management)?
主数据管理是旨在创建和维护权威、可靠、可持续、准确、及时和安全的环境的过程和技术框架。这个环境代表了一个单一版本的事实,作为跨不同的系统、业务单元和用户社区的可接受的记录系统。

尽管MDM不是新的,但是最近人们对开发MDM解决方案的兴趣大增。这是因为跨广泛行业的组织的战略和战术需求。这种趋势的一些关键驱动因素是诸如GPDR、Sarbanes-Oxley Act和HIPAA等法规的遵从性。

主数据管理还使组织能够更好地关注以客户为中心的活动,更好地洞察客户的目标、需求、能力和要求额外产品和服务的倾向。如果执行正确,这可以增加交叉销售和追加销售的收入机会,并改善整体客户体验。

MDM的好处
在IT领域内有一股实施MDM的驱动力。通常情况下,应用程序是为支持某个业务领域的运营过程而设计的,它们拥有自己的信息技术设施,包括与应用相关的数据存储和定义。结果是:信息共享越多,我们越是发现多年来横跨业务线的分布式计算和应用已经形成了“信息孤岛”。 当依赖应用的Master Data的拷贝数量不断增加时,通过点对点连接方式同步数据会变得很复杂,整个环境也变得很难维护。与此同时,很难控制信息的一致性和数据的质量了。

像其他重要的IT趋势,MDM对生产率改善、风险管理、成本降低等方面均有显著的好处。更加准确得讲,MDM通过支持依赖以下益处的业务项目来证明自己的价值:

1. 全面的客户知识
内部开发各种应用系统经常会采用不同的方式支持相同类型的客户数据功能。例如某银行可能有多种客户接触界面:支行、ATM、MAIL、Internet、电话和短信。其中的任意一个应用均会创建、更新和停用客户信息。但是在一个相互不协作的环境下,应用就无法知道准确全面的客户信息,包括:唯一客户的数量、客户与银行交互的喜好、客户是如何尝试不同的途径来完成交易的。单一的MasterData存储为所有客户的活动数据提供了单一的来源,采用统一的方式支持各种运营和分析应用。 如果一个企业拥有了完整一致的客户视图,便能提供更加丰富的个性化服务和恰当的处置。这样便能产生更好的客户体验,降低客户流失率。

2. 增强竞争力
在资源有限的情况下,企业需要快速产生新的业务能力,迅速抓住新的商业机会。MDM降低了集成新数据和系统的复杂性,因此能有利于提高企业的敏捷性和竞争力。

3. 改进运营效率,降低成本
复制相同的数据经常带动复制相关的管理数据的活动,包括:典型的日常数据管理工作(备份和维护)、增加设施的license成本(比如RDBMS, ETL产品的license和维护成本),特定的应用工具和服务。统一的数据视图能让企业降低重复出现的运营成本和任务。

4. 一致的报表
报表间的不一致源自信息处理流程的治理缺乏和各环节上有差异的复制和复杂转换。受治理的使用MasterData的信息处理过程能降低报表间的不一致。

5. 提高信息质量
由标准化模型、数值域(valuedomain)和商业规则等组成的元数据能帮助企业更加有效地监控跨越多个垂直应用的信息质量控制情况,降低信息的碎块化和重复劳动。

6. 提高实施速度
MDM提供了信息资产的标准化视图,这减少了抽取和转换数据的延迟, 加速了各种项目的实施进度:应用迁移、系统升级、数据仓库(datawarehouse)/数据集市(datamart)。

7. 简化应用系统开发
MDM的合并工作不仅仅限制在数据领域。当多个MasterData Object合并到一个主存储(MasterRepository)时,就会有可能合并与数据的生命周期相关的应用系统的功能。例如,一个企业中可能会有多个系统负责录入新产品数据到不同的产品数据库,可以把这些产品管理功能合并,提供单一创建新产品功能服务,让不同的应用调用。引入类似的数据服务层为SOA构架提供了必要的抽象。

8. 更好的费用分析和规划
与产品和供应商等相关的MasterData 能够帮助企业改进以下工作:采购工作、协调竞争性的外包(competitivesourcing)、预测未来的费用、改进供应商管理 等等。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 什么是主数据管理系统?

    什么是主数据管理系统?

    采集与集成、共享、数据质量、数据治理是主数据管理的四大要素,主数据管理要做的就是从企业外部和企业的多个业务系统中采集和整合最核心的、最需……查看详情

    发布时间:2020.04.29来源:知乎浏览量:135次

  • 数据质量管理的方法论

    数据质量管理的方法论

    在数据治理方面,不论是国际的还是国内的,我们能找到很多数据治理成熟度评估模型这样的理论框架,作为企业实施的指引。而说到数据质量管理的方法……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:210次

  • 大数据时代,我们将面临数据治理的新阶段

    大数据时代,我们将面临数据治理的新阶段

    目前业界并没有对其概念的统一标准定义,我们可以这么认为,数据治理从本质上看就是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利……查看详情

    发布时间:2020.03.26来源:知乎浏览量:108次

  • 数据交换服务组件介绍

    数据交换服务组件介绍

    数据交换服务组件,在遵循一定的交换策略条件下进行数据交换及消息传递,支持数据资源在不同单位、不同区域的快速交换和共享,提供配置工具生成交……查看详情

    发布时间:2020.08.12来源:知乎浏览量:196次

  • 企业应该将数据治理作为加速数字化转型的催化剂

    企业应该将数据治理作为加速数字化转型的催化剂

    随着许多业务系统和应用程序(包括采购,呼叫中心交互,网站访问,移动应用程序使用以及越来越多的物联网传感器和设备)产生的大量客户数据,应该……查看详情

    发布时间:2019.07.04来源:知乎浏览量:135次

  • 浅析数据治理与数据安全治理的概念差异

    浅析数据治理与数据安全治理的概念差异

    当我们谈到数据资产的时候,想到最多的就是数据治理,接下来就是数据安全治理,那么这两者之间有什么区别和差异呢?……查看详情

    发布时间:2019.08.14来源:知乎浏览量:207次

  • 一文讲透数据治理核心指标

    一文讲透数据治理核心指标

    股份制改革对我国银行业来说只是一个开始,企业在风险管理、创造价值等方面还有很长的路要走。风险管理要求提供精准的数据模型、创造价值要求充分……查看详情

    发布时间:2020.06.19来源:CSDN浏览量:146次

  • 银行自身要提升数据治理能力

    银行自身要提升数据治理能力

    数字经济对金融服务的模式也提出了新的要求,银行必须依托科技支撑,加快和深化数字化转型,带动风控模式的改革创新。银行还需要着力于构建其自身……查看详情

    发布时间:2019.10.29来源:知乎浏览量:207次

  • 深入浅出元数据及元数据管理

    深入浅出元数据及元数据管理

    大数据时代下,数据已被公认为一项重要的资产。而元数据管理作为数据管理框架中一项重要的管理职能,也越来越多的出现在大家的视野中。但是对于元……查看详情

    发布时间:2019.10.24来源:亿信华辰浏览量:123次

  • 企业如何开展数据治理项目

    企业如何开展数据治理项目

    从大的阶段来看,数据治理主要分为存量数据“由乱到治”的阶段,以及增量数据严格按照规章制度实施确保“行不逾矩”的运营阶段。在“由乱到治”的……查看详情

    发布时间:2020.06.30来源:知乎浏览量:114次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议