主数据管理对生产率改善、风险管理、成本降低等方面均有显著的好处

发布时间:2020.09.03来源:知乎浏览量:144次标签:数据治理

什么是MDM(Master Data Management)?
主数据管理是旨在创建和维护权威、可靠、可持续、准确、及时和安全的环境的过程和技术框架。这个环境代表了一个单一版本的事实,作为跨不同的系统、业务单元和用户社区的可接受的记录系统。

尽管MDM不是新的,但是最近人们对开发MDM解决方案的兴趣大增。这是因为跨广泛行业的组织的战略和战术需求。这种趋势的一些关键驱动因素是诸如GPDR、Sarbanes-Oxley Act和HIPAA等法规的遵从性。

主数据管理还使组织能够更好地关注以客户为中心的活动,更好地洞察客户的目标、需求、能力和要求额外产品和服务的倾向。如果执行正确,这可以增加交叉销售和追加销售的收入机会,并改善整体客户体验。

MDM的好处
在IT领域内有一股实施MDM的驱动力。通常情况下,应用程序是为支持某个业务领域的运营过程而设计的,它们拥有自己的信息技术设施,包括与应用相关的数据存储和定义。结果是:信息共享越多,我们越是发现多年来横跨业务线的分布式计算和应用已经形成了“信息孤岛”。 当依赖应用的Master Data的拷贝数量不断增加时,通过点对点连接方式同步数据会变得很复杂,整个环境也变得很难维护。与此同时,很难控制信息的一致性和数据的质量了。

像其他重要的IT趋势,MDM对生产率改善、风险管理、成本降低等方面均有显著的好处。更加准确得讲,MDM通过支持依赖以下益处的业务项目来证明自己的价值:

1. 全面的客户知识
内部开发各种应用系统经常会采用不同的方式支持相同类型的客户数据功能。例如某银行可能有多种客户接触界面:支行、ATM、MAIL、Internet、电话和短信。其中的任意一个应用均会创建、更新和停用客户信息。但是在一个相互不协作的环境下,应用就无法知道准确全面的客户信息,包括:唯一客户的数量、客户与银行交互的喜好、客户是如何尝试不同的途径来完成交易的。单一的MasterData存储为所有客户的活动数据提供了单一的来源,采用统一的方式支持各种运营和分析应用。 如果一个企业拥有了完整一致的客户视图,便能提供更加丰富的个性化服务和恰当的处置。这样便能产生更好的客户体验,降低客户流失率。

2. 增强竞争力
在资源有限的情况下,企业需要快速产生新的业务能力,迅速抓住新的商业机会。MDM降低了集成新数据和系统的复杂性,因此能有利于提高企业的敏捷性和竞争力。

3. 改进运营效率,降低成本
复制相同的数据经常带动复制相关的管理数据的活动,包括:典型的日常数据管理工作(备份和维护)、增加设施的license成本(比如RDBMS, ETL产品的license和维护成本),特定的应用工具和服务。统一的数据视图能让企业降低重复出现的运营成本和任务。

4. 一致的报表
报表间的不一致源自信息处理流程的治理缺乏和各环节上有差异的复制和复杂转换。受治理的使用MasterData的信息处理过程能降低报表间的不一致。

5. 提高信息质量
由标准化模型、数值域(valuedomain)和商业规则等组成的元数据能帮助企业更加有效地监控跨越多个垂直应用的信息质量控制情况,降低信息的碎块化和重复劳动。

6. 提高实施速度
MDM提供了信息资产的标准化视图,这减少了抽取和转换数据的延迟, 加速了各种项目的实施进度:应用迁移、系统升级、数据仓库(datawarehouse)/数据集市(datamart)。

7. 简化应用系统开发
MDM的合并工作不仅仅限制在数据领域。当多个MasterData Object合并到一个主存储(MasterRepository)时,就会有可能合并与数据的生命周期相关的应用系统的功能。例如,一个企业中可能会有多个系统负责录入新产品数据到不同的产品数据库,可以把这些产品管理功能合并,提供单一创建新产品功能服务,让不同的应用调用。引入类似的数据服务层为SOA构架提供了必要的抽象。

8. 更好的费用分析和规划
与产品和供应商等相关的MasterData 能够帮助企业改进以下工作:采购工作、协调竞争性的外包(competitivesourcing)、预测未来的费用、改进供应商管理 等等。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理—构建你的数据屏障

    数据治理—构建你的数据屏障

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.06.28来源:知乎浏览量:134次

  • 治理成熟度差距以及如何克服它

    治理成熟度差距以及如何克服它

    了解您在真正的IG成熟度方面的立场,并在自己和团队中识别变革的阻力。不要回避要求定期审核和验尸以评估进度和后续步骤。通过具体信息,您可以……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:153次

  • 大数据时代企业为什么需要数据治理吗?

    大数据时代企业为什么需要数据治理吗?

    如今数字化转型正在各行各业中迅速发展,以数据、流量、知识为主大数据时代已经到来,对于一个企业来说,要实施数字花和大数据战略,数据治理更为……查看详情

    发布时间:2019.07.18来源:知乎浏览量:149次

  • 数据治理&数据仓库

    数据治理&数据仓库

    亿信睿智数据治理管理平台提供数据治理&数据仓库一体化解决方案,协助企业:建立企业内一致的信息视图,建立操作型数据的集中存储与分发的基础平……查看详情

    发布时间:2018.12.05来源:数据治理浏览量:263次

  • 4+7集采进入大数据时代,科技巨头驱动医药行业大变局

    4+7集采进入大数据时代,科技巨头驱动医药行业大变局

    未来的医疗大数据将影响整个医药产业格局。 根据国家医保局及“4+7”带量采购发布的文件,包括天津、大连、沈阳等城市药品带量采购细则……查看详情

    发布时间:2019.03.28来源:亿信华辰浏览量:109次

  • 询问数据治理专家:我的数据治理计划需要多长时间?

    询问数据治理专家:我的数据治理计划需要多长时间?

    数据治理应该是您正在组织中实现和嵌入的东西,以便它像往常一样成为业务的一部分。出于这个原因,任何与我合作或参加我的培训课程的人都知道,我……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:221次

  • 数据治理成功要素:制定数据质量管理办法及标准

    数据治理成功要素:制定数据质量管理办法及标准

    数据质量管理是指为了满足信息系统的需要,对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的各类数据质量问题,……查看详情

    发布时间:2022.02.25来源:小亿浏览量:306次

  • 业务流程建模及其在企业中的作用

    业务流程建模及其在企业中的作用

    为实现其目标,组织必须完全了解其流程。因此,业务流程设计和分析是定义业务运营方式的关键,并确保员工理解并负责履行其职责。……查看详情

    发布时间:2019.02.18来源:亿信华辰浏览量:224次

  • 企业构建数据中台是否存在一个量化或判断的标准?

    企业构建数据中台是否存在一个量化或判断的标准?

    对这个问题有几种解读,第一种解读是说企业是否要构建自己的数据中台,这个问题有没有标准?以这个问题来讲的话,我们认为所有的企业它都需要数据……查看详情

    发布时间:2021.01.23来源:知乎浏览量:160次

  • 2019年的数据管理趋势:治理,DataOps,云

    2019年的数据管理趋势:治理,DataOps,云

    GDPR的数据治理要求,对AI驱动的分析的追求以及云计算的拉动为2018年数据管理和大数据团队的努力奠定了基调。这些和相关的数据管理趋势……查看详情

    发布时间:2019.01.02来源:亿信华辰浏览量:123次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议