主数据管理对生产率改善、风险管理、成本降低等方面均有显著的好处

发布时间:2020.09.03来源:知乎浏览量:144次标签:数据治理

什么是MDM(Master Data Management)?
主数据管理是旨在创建和维护权威、可靠、可持续、准确、及时和安全的环境的过程和技术框架。这个环境代表了一个单一版本的事实,作为跨不同的系统、业务单元和用户社区的可接受的记录系统。

尽管MDM不是新的,但是最近人们对开发MDM解决方案的兴趣大增。这是因为跨广泛行业的组织的战略和战术需求。这种趋势的一些关键驱动因素是诸如GPDR、Sarbanes-Oxley Act和HIPAA等法规的遵从性。

主数据管理还使组织能够更好地关注以客户为中心的活动,更好地洞察客户的目标、需求、能力和要求额外产品和服务的倾向。如果执行正确,这可以增加交叉销售和追加销售的收入机会,并改善整体客户体验。

MDM的好处
在IT领域内有一股实施MDM的驱动力。通常情况下,应用程序是为支持某个业务领域的运营过程而设计的,它们拥有自己的信息技术设施,包括与应用相关的数据存储和定义。结果是:信息共享越多,我们越是发现多年来横跨业务线的分布式计算和应用已经形成了“信息孤岛”。 当依赖应用的Master Data的拷贝数量不断增加时,通过点对点连接方式同步数据会变得很复杂,整个环境也变得很难维护。与此同时,很难控制信息的一致性和数据的质量了。

像其他重要的IT趋势,MDM对生产率改善、风险管理、成本降低等方面均有显著的好处。更加准确得讲,MDM通过支持依赖以下益处的业务项目来证明自己的价值:

1. 全面的客户知识
内部开发各种应用系统经常会采用不同的方式支持相同类型的客户数据功能。例如某银行可能有多种客户接触界面:支行、ATM、MAIL、Internet、电话和短信。其中的任意一个应用均会创建、更新和停用客户信息。但是在一个相互不协作的环境下,应用就无法知道准确全面的客户信息,包括:唯一客户的数量、客户与银行交互的喜好、客户是如何尝试不同的途径来完成交易的。单一的MasterData存储为所有客户的活动数据提供了单一的来源,采用统一的方式支持各种运营和分析应用。 如果一个企业拥有了完整一致的客户视图,便能提供更加丰富的个性化服务和恰当的处置。这样便能产生更好的客户体验,降低客户流失率。

2. 增强竞争力
在资源有限的情况下,企业需要快速产生新的业务能力,迅速抓住新的商业机会。MDM降低了集成新数据和系统的复杂性,因此能有利于提高企业的敏捷性和竞争力。

3. 改进运营效率,降低成本
复制相同的数据经常带动复制相关的管理数据的活动,包括:典型的日常数据管理工作(备份和维护)、增加设施的license成本(比如RDBMS, ETL产品的license和维护成本),特定的应用工具和服务。统一的数据视图能让企业降低重复出现的运营成本和任务。

4. 一致的报表
报表间的不一致源自信息处理流程的治理缺乏和各环节上有差异的复制和复杂转换。受治理的使用MasterData的信息处理过程能降低报表间的不一致。

5. 提高信息质量
由标准化模型、数值域(valuedomain)和商业规则等组成的元数据能帮助企业更加有效地监控跨越多个垂直应用的信息质量控制情况,降低信息的碎块化和重复劳动。

6. 提高实施速度
MDM提供了信息资产的标准化视图,这减少了抽取和转换数据的延迟, 加速了各种项目的实施进度:应用迁移、系统升级、数据仓库(datawarehouse)/数据集市(datamart)。

7. 简化应用系统开发
MDM的合并工作不仅仅限制在数据领域。当多个MasterData Object合并到一个主存储(MasterRepository)时,就会有可能合并与数据的生命周期相关的应用系统的功能。例如,一个企业中可能会有多个系统负责录入新产品数据到不同的产品数据库,可以把这些产品管理功能合并,提供单一创建新产品功能服务,让不同的应用调用。引入类似的数据服务层为SOA构架提供了必要的抽象。

8. 更好的费用分析和规划
与产品和供应商等相关的MasterData 能够帮助企业改进以下工作:采购工作、协调竞争性的外包(competitivesourcing)、预测未来的费用、改进供应商管理 等等。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 业务词汇表和元数据:数据治理和词汇表准备

    业务词汇表和元数据:数据治理和词汇表准备

    我经常被问到“我们如何捕获数据词汇表资产”和“我们是否已准备好与数据管理员合作?”我的回答始终是:如果您能说明数据治理计划的目标并拥有赞……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:140次

  • 数据治理市场驱动因素和预测

    数据治理市场驱动因素和预测

    全球数据治理市场分散,主要参与者使用各种策略,如新产品发布,扩张,协议,合资企业,合作伙伴关系,收购等,以增加他们在这个市场的足迹,以便……查看详情

    发布时间:2019.07.11来源:知乎浏览量:165次

  • 如何制定数据标准

    如何制定数据标准

    企业的数据标准来源非常丰富,有外部的监管要求,行业的通用标准,同时也必须考虑到企业内部数据的实际情况,梳理其中的业务指标、数据项、代码等……查看详情

    发布时间:2020.11.13来源:知乎浏览量:148次

  • 亿信华辰亮相2018智慧校园广州论坛 共探教育数据治理

    亿信华辰亮相2018智慧校园广州论坛 共探教育数据治理

    近20位行业大咖和领导,来自全国451所学校的1386位教育信息化专家、院校领导及企业负责人参与了此次大会,针对服务治理、数据治理、高等……查看详情

    发布时间:2018.10.15来源:亿信华辰浏览量:123次

  • 基于大数据的质量管理系统怎么选?

    基于大数据的质量管理系统怎么选?

    对于一个制造企业来说,生产是企业最大的动力,而生产质量也需要进行优化管理,一个好的质量管理会带给企业巨大的发展空间和利润价值。正因如此,……查看详情

    发布时间:2019.11.07来源:知乎浏览量:138次

  • 最终有人把数据治理的元数据、主数据等概念讲明白了

    最终有人把数据治理的元数据、主数据等概念讲明白了

    数据治理就是以服务组织战略目标为基本原则,通过组织成员的协同努力,流程制度的制定,以及数据资产的梳理、采集清洗、结构化存储、可视化管理和……查看详情

    发布时间:2022.06.24来源:小亿浏览量:355次

  • 银行的数据治理最佳实践

    银行的数据治理最佳实践

    数据治理本身分狭义和广义两个区别,狭义的治理主要是组织、制度、流程这些,data governance的一个定义就是 the manag……查看详情

    发布时间:2018.11.29来源:知乎浏览量:179次

  • 数据治理为什么会重新引起关注?

    数据治理为什么会重新引起关注?

    这突出了数据治理的重要性。由数据治理研究所定义为“信息相关过程的决策权和责任系统,根据商定的模型执行,描述谁可以采取什么行动与什么信息,……查看详情

    发布时间:2019.09.04来源:知乎浏览量:181次

  • 数据治理寻求未来:平衡数据治理和数据管理

    数据治理寻求未来:平衡数据治理和数据管理

    想要通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势吗?那么这篇文章你一定得看!……查看详情

    发布时间:2019.08.29来源:知乎浏览量:114次

  • 世界各地的组织如何处理数据治理

    世界各地的组织如何处理数据治理

    在2019年G20大阪峰会召开的同时,我很幸运能够在整个六月的整个月里在东京办公室工作。这是一个有趣的事件,引起我注意的主要议题之一是“……查看详情

    发布时间:2019.07.11来源:知乎浏览量:147次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议