增强数据管理吸引了更多企业的兴趣

发布时间:2019.03.07来源:亿信华辰浏览量:129次标签:数据治理


随着企业越来越多地对增强分析进行标准化,相关模型正在数据和分析市场中形成:增强数据管理。该技术正在改变数据管理领域和数据专业人员角色

根据Gartner的说法,增强型数据管理使用机器学习和AI来制定企业数据管理规范,例如数据质量和集成元数据管理主数据管理和数据库管理系统,“自我配置和自我调整”。

Gartner在其最近的2019年十大数据和分析趋势列表中包含了增强型数据管理。专家表示,增强型数据管理已经开始改变数据专业人员如何使用更先进的机器学习功能和AI驱动的自动化来准备和管理数据。

“增强型数据管理将成为实现更快,更具可扩展性,更智能和更高质量的增强型业务决策的重要推动因素,”Dresner咨询服务研究员Bill Hostmann表示。

俄勒冈州本德市Ventana Research分析师David Menninger表示,他认为增强型数据管理是所有类型增强软件应用程序(包括分析)的一个更大趋势的一部分,这些应用程序往往会受到更多关注。

AI和机器学习如何改变数据管理

与增强分析一样,增强型数据管理由AI和机器学习驱动。

Forrester分析师Michele Goetz表示,机器学习长期以来一直是数据管理和治理工具的一个组成部分,支持匹配,异常检测和校正以及映射。现在的不同之处在于“算法的复杂性以及这些工具中机器学习所解决的数据挑战的广度,”Goetz说。

Goetz列出了一些企业正在使用机器学习的数据管理任务:

  • 细粒度分析,从数据源,管道和工具库中提取个人可识别信息,并了解这些条件;
  • 大规模自动化数据标记,分类和标记,以减少手动查找,审查和构建业务逻辑以理解数据的需要;
  • 捕获数据查询,注释和评级,以推断数据的价值以及是否可以信任数据源并确保遵守数据策略; 和
  • 解释数据使用和工作负载,以自动确定数据仓库的管理和部署。

为数据专业人员自动化任务

增强数据管理中的机器学习使一些数据专业人员的日常手动任务自动化。这些任务包括数据库性能调优和优化以及计算密集和迭代的其他数据库管理作业。

Menninger表示,自动化其中一些工作可能会减少入门级数据库管理员职位的数量,但他和其他分析师表示,它并没有最大限度地减少人类专业知识和数据管理输入的需求。增强型数据管理使用机器学习工具 - 或Goetz描述的“ AI机器人 ” - 在让人类做出最终选择的同时提供智能建议。

Constellation Research的分析师Doug Henschen表示,“增强产品被描述为这样,因为他们被称为提供建议的人类助手,在某些情况下还提供自动化选项。” “但他们也提出了以选择,调整选项或基于规则的执行控制形式提供人为监督的观点。在数据管理领域,增强选项在角色中显得更多,其中存在大量变量和选择做成。“

这些人工智能驱动的人类助手正在释放数据专业人员的时间,因此他们可以专注于高价值的任务而不是低价值的日常任务。Henschen说,数据专业人员应该欢迎这种变化。

“我认为数据专业人员确实希望机器处理繁琐且计算密集的东西,”Henschen说。“有很多工作要做,让机器处理他们最擅长的事情,这将使人类能够专注于创造性和有远见的工作。”


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 强大的数据治理是机器学习成功的关键

    强大的数据治理是机器学习成功的关键

    人工智能和机器学习这两个术语通常被视为同一枚硬币的两面。尽管如此,虽然ML算法增强了AI功能,并使它们能够进行更多的尖端和智能计算,但还……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:162次

  • 银行数据治理-数据治理是银行业面对的一个崭新课题

    银行数据治理-数据治理是银行业面对的一个崭新课题

    本书是“银行业信息化丛书”之一,数据治理是银行业面对的一个崭新课题,本书从银行业数据基本概况、数据治理现状,以及银行业数据治理体系、数据……查看详情

    发布时间:2018.11.29来源:数据治理浏览量:177次

  • 实施数据治理策略

    实施数据治理策略

    数据治理是确保数据在输入系统时满足精确标准和业务规则的过程。数据治理使企业能够控制数据资产的管理。此过程包括确保数据符合其预期目的所需的……查看详情

    发布时间:2018.11.16来源:互联网浏览量:117次

  • 不是专业数据分析师的你,该如何科学地看待大数据呢?

    不是专业数据分析师的你,该如何科学地看待大数据呢?

    似乎很多创业人,都喜欢讲一些概念化的东西。例如前两年的互联网+,例如后来的大数据,又例如最近的区块链…………查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:104次

  • 大数据平台应用开发的五个痛点

    大数据平台应用开发的五个痛点

    随着数据利用率的提高和数据共享行为变得频繁,对于大数据平台应用开发来说,如何进行数据交换是每个平台组件都绕不过去的问题。目前大数据平台应……查看详情

    发布时间:2020.08.21来源:知乎浏览量:126次

  • BigID和Ionic安全合作伙伴为云和多云合规性增强数据治理和隐私

    BigID和Ionic安全合作伙伴为云和多云合规性增强数据治理和隐私

    BigID和Ionic安全合作伙伴为云和多云合规性增强数据治理和隐私以色列纽约和特拉维夫 - (BUSINESS WIRE)- (美国商……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:107次

  • 数据治理系列5:浅谈数据质量管理

    数据治理系列5:浅谈数据质量管理

    数据质量管理是对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的数据质量问题,进行识别、度量、监控、预警等一……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:183次

  • 大数据在应急管理中的应用——亿信华辰

    大数据在应急管理中的应用——亿信华辰

    随着互联网、社交媒体和人工智能的技术发展和应用普及,大数据在应急管理中发挥的作用将越来越重要,是应急管理未来发展的重要方向之一。……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:143次

  • 企业数字化转型面临的挑战

    企业数字化转型面临的挑战

    来自调研机构Gartner的预测也显示,到2020年,多数企业将有75%的业务实现数字化或正在数字化。数字化转型已经成为企业发展的必经之……查看详情

    发布时间:2020.04.03来源:知乎浏览量:117次

  • 数据资产管理的发展趋势

    数据资产管理的发展趋势

    随着数据资产管理生态系统的不断发展,现有的实践体系也在迅速发展,可以从数据对象、数据采集、处理架构、组织职能、管理手段和应用范围六个方面……查看详情

    发布时间:2020.09.11来源:知乎浏览量:196次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议