大数据治理的新范例

发布时间:2018.12.26来源:亿信华辰浏览量:132次标签:数据治理


数十年来,数据科学家已经拥有沙箱来探索数据并找到有价值的见解。在看似愉快的折衷方案中,分析师可以快速加载,操纵和组合企业和行业数据,以寻找新的见解和预测,而无需担心它们会危及敏感数据或生产工作流程。虽然这加速了创造新的见解,但将它们投入生产是一场噩梦。在未部署的环境中创建的一组自定义代码和数据需要在部署之前进行转换,质量控制和优化。企业通常需要一年的大部分时间才能从几周内收集的洞察中获得价值。 

大数据的幽灵有可能使情况变得更糟- 在很大程度上。现在,分析师们正在使用IT外部的数据结构和编程语言。外部数据源的数量和复杂性正在爆炸式增长。如果没有新的方法,在大数据沙箱中发现的洞察力可能永远不会投入生产。 

所出现的是一种新的范例,它将数据治理- 大多数分析师的诅咒这一术语 - 带入了大数据。但是,大数据治理不是严格限制数据使用和文档,而是灵活,协作和高效。它使分析师参与而非分离,以获取他们的学习以加速生产准备。最重要的是,它取代了沙箱数据的大规模转换,并采用“促销”流程,确保分析数据在大数据平台上生产就绪。 

大数据治理要求我们从头开始重新思考治理。大数据治理不是物理地分离沙箱和生产数据,而是逻辑地控制访问和使用,因为数据从“原始”到“准备”成熟。您如何判断数据是否已准备好生产?元数据。任何支持生产使用的大数据平台都必须具有跟踪数据摄取,验证,准备和使用生命周期的元数据。元数据需要管理数据访问权限,捕获数据分析结果以及数据开发人员和最终用户的评论。元数据存储定义生产准备的策略,并能够实施它们。没有元数据,数据湖就变成了数据沼泽。 

但为了实现这一点,元数据捕获必须是自动化和相关的。大数据治理的第二个原则与当前的教条相矛盾:从一开始就使用模式来丰富元数据。大多数业务数据都是结构化的,无论是关系数据库,日志文件,XML还是大型机副本。该结构可用于自动评估原始数据的质量,完整性和内容。这不仅为分析师提供了对数据的洞察力,还建立了一个可以构建的元数据基础。

大数据治理的第三个原则是记分卡驱动的优先级。并非所有数据都需要严格的质量和访问管理。实际上,假设大多数原始数据都不会被使用- 因此丰富其元数据是浪费时间。相反,记分卡是为数据的各种用途而创建的 - 合规报告,营销分析,供应链分析等。某些策略适用于所有记分卡 - 需要屏蔽PII数据 - 其他则非常具体 - 需要数据沿袭所有合规报告。使用元数据基础,可以轻松地为任何数据集创建记分卡。然后,这些记分卡用于识别治理工作并确定其优先级,以使最重要的数据生产就绪。 

从哪儿开始?如果您的数据库元数据较差,那么就建议您先评估现有资产的质量和内容。自动化工具可以填充元数据存储库,作为创建记分卡的基础。使湖泊的内容和质量透明是迈向大数据治理的第一步。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理—良好的开端

    数据治理—良好的开端

    数据治理意味着什么,它有什么作用?数据治理意味着对数据相关事务的决策和权限的行使。 更具体地说,数据治理是信息相关流程的决策权和责任制……查看详情

    发布时间:2019.06.21来源:知乎浏览量:124次

  • 如何选择合适的企业数据治理工具

    如何选择合适的企业数据治理工具

    清楚了在数据治理工具选择中的应注意的6大问题,才能在着手选择企业数据治理工具之前就可以清楚地知道要如何去做筛选。……查看详情

    发布时间:2021.03.31来源:数据治理研究院浏览量:124次

  • 国内主流的主数据管理方案

    国内主流的主数据管理方案

    主数据管理 (MDM) 是一种能够定义和管理组织中关键数据的全面方法。它提供跨整个企业的一站式可信任数据视图、敏捷的自助服务访问、基于分……查看详情

    发布时间:2020.05.07来源:知乎浏览量:581次

  • 简述数据资产管理方案必须注意的6点

    简述数据资产管理方案必须注意的6点

    “数据资产管理”一词,在国内首次由DAMS(中国数据资产管理峰会)组委会正式提出。首届“中国数据资产……查看详情

    发布时间:2020.08.14来源:知乎浏览量:158次

  • 数据管理和使用:21世纪的治理

    数据管理和使用:21世纪的治理

    预计该管理机构将对新问题和问题进行专家调查,并采用新方法预测今天决策的未来后果。……查看详情

    发布时间:2019.03.20来源:亿信华辰浏览量:140次

  • 企业主数据管理方案

    企业主数据管理方案

    主数据管理使得企业能够集中化管理数据,在分散的系统间保证主数据的一致性,改进数据合规性、快速部署新应用、充分了解客户、加速推出新产品的速……查看详情

    发布时间:2020.04.29来源:知乎浏览量:156次

  • 数据治理成功的预测指标

    数据治理成功的预测指标

    简而言之,数据治理项目在组织内经常遇到的挑战通常与高级管理层和业务中的数据文化状态密切相关。从这两个利益相关方团体获得支持可以显着提高数……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:176次

  • Spring Boot、微服务架构和大数据治理三者之间的故事

    Spring Boot、微服务架构和大数据治理三者之间的故事

    微服务的诞生并非偶然,它是在互联网高速发展,技术日新月异的变化以及传统架构无法适应快速变化等多重因素的推动下诞生的产物。……查看详情

    发布时间:2019.01.07来源:亿信华辰浏览量:140次

  • 如何搭建数据质量管理平台

    如何搭建数据质量管理平台

    数据往往在一个企业是相当于一个重要资产,企业在经营的过程中也会积累不少各类数据,这类数据后期也可通过归纳、提炼从而进行深度挖掘分析,给企……查看详情

    发布时间:2019.07.30来源:知乎浏览量:141次

  • 数据问题的全面解决之道——数据治理

    数据问题的全面解决之道——数据治理

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:159次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议