大数据治理的新范例

发布时间:2018.12.26来源:亿信华辰浏览量:37次标签:数据治理


数十年来,数据科学家已经拥有沙箱来探索数据并找到有价值的见解。在看似愉快的折衷方案中,分析师可以快速加载,操纵和组合企业和行业数据,以寻找新的见解和预测,而无需担心它们会危及敏感数据或生产工作流程。虽然这加速了创造新的见解,但将它们投入生产是一场噩梦。在未部署的环境中创建的一组自定义代码和数据需要在部署之前进行转换,质量控制和优化。企业通常需要一年的大部分时间才能从几周内收集的洞察中获得价值。 

大数据的幽灵有可能使情况变得更糟- 在很大程度上。现在,分析师们正在使用IT外部的数据结构和编程语言。外部数据源的数量和复杂性正在爆炸式增长。如果没有新的方法,在大数据沙箱中发现的洞察力可能永远不会投入生产。 

所出现的是一种新的范例,它将数据治理- 大多数分析师的诅咒这一术语 - 带入了大数据。但是,大数据治理不是严格限制数据使用和文档,而是灵活,协作和高效。它使分析师参与而非分离,以获取他们的学习以加速生产准备。最重要的是,它取代了沙箱数据的大规模转换,并采用“促销”流程,确保分析数据在大数据平台上生产就绪。 

大数据治理要求我们从头开始重新思考治理。大数据治理不是物理地分离沙箱和生产数据,而是逻辑地控制访问和使用,因为数据从“原始”到“准备”成熟。您如何判断数据是否已准备好生产?元数据。任何支持生产使用的大数据平台都必须具有跟踪数据摄取,验证,准备和使用生命周期的元数据。元数据需要管理数据访问权限,捕获数据分析结果以及数据开发人员和最终用户的评论。元数据存储定义生产准备的策略,并能够实施它们。没有元数据,数据湖就变成了数据沼泽。 

但为了实现这一点,元数据捕获必须是自动化和相关的。大数据治理的第二个原则与当前的教条相矛盾:从一开始就使用模式来丰富元数据。大多数业务数据都是结构化的,无论是关系数据库,日志文件,XML还是大型机副本。该结构可用于自动评估原始数据的质量,完整性和内容。这不仅为分析师提供了对数据的洞察力,还建立了一个可以构建的元数据基础。

大数据治理的第三个原则是记分卡驱动的优先级。并非所有数据都需要严格的质量和访问管理。实际上,假设大多数原始数据都不会被使用- 因此丰富其元数据是浪费时间。相反,记分卡是为数据的各种用途而创建的 - 合规报告,营销分析,供应链分析等。某些策略适用于所有记分卡 - 需要屏蔽PII数据 - 其他则非常具体 - 需要数据沿袭所有合规报告。使用元数据基础,可以轻松地为任何数据集创建记分卡。然后,这些记分卡用于识别治理工作并确定其优先级,以使最重要的数据生产就绪。 

从哪儿开始?如果您的数据库元数据较差,那么就建议您先评估现有资产的质量和内容。自动化工具可以填充元数据存储库,作为创建记分卡的基础。使湖泊的内容和质量透明是迈向大数据治理的第一步。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 面对数据治理的挑战及难点,如何找到最佳方案?

    面对数据治理的挑战及难点,如何找到最佳方案?

    面对以上8点数据治理最佳实践方法,小编为您推荐一款好用的数据治理工具配合实施数据治理方案,不仅可以保证您的数据治理项目按计划实施,也可以……查看详情

    发布时间:2021.07.01来源:亿信数据治理知识库浏览量:37次

  • 数据治理的概念、难点和最佳实践方法

    数据治理的概念、难点和最佳实践方法

    数字化转型的目的和核心是数据赋能业务,通过智能数据归一、数据统一治理与服务、数据实体化融合、数据资产化的方式,帮助实现业务转型、创新和增……查看详情

    发布时间:2021.08.06来源:亿信华辰,数据治理的实践方法浏览量:40次

  • 政府如何进行数据治理

    政府如何进行数据治理

    政府掌握全社会重要核心的、高价值的数据,如何通过有效管理,进行共享开放与协同,释放背后价值,赋能管理、服务决策,推动治理能力的提升对于我……查看详情

    发布时间:2021.08.30来源:亿信华辰浏览量:85次

  • 数据清洗与数据治理的3个不同点

    数据清洗与数据治理的3个不同点

    ​数据清洗,是指发现并纠正数据文件中可识别的错误的最后一道程序,是数据治理工作中必不可少的一项关键任务,是数据治理的子集.……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:423次

  • 数据治理到底在哪里治?

    数据治理到底在哪里治?

    关于数据中台到底应该在中台治理还是应该在后台治理,数据治理到底应该放在中台,还是后台,我个人的理解是:小数据标准化治理靠人工、大数据预测……查看详情

    发布时间:2020.07.07来源:知乎浏览量:42次

  • 数据治理直击灵魂的四问:治什么?谁来治?怎么治?选哪个?

    数据治理直击灵魂的四问:治什么?谁来治?怎么治?选哪个?

    国际数据治理研究所(DGI)给出的定义:数据治理是一个通过一系列信息相关的过程来实现决策权和职责分工的系统,这些过程按照达成共识的模型来……查看详情

    发布时间:2020.08.14来源:知乎浏览量:51次

  • 为什么您的主数据管理需要数据治理

    为什么您的主数据管理需要数据治理

    近年来,各组织越来越意识到他们的数据及其在最关键业务功能的成功或失败中所起的作用。这种思维方式的转变以及云技术的发展已经形成了技术预算变……查看详情

    发布时间:2018.12.25来源:数据治理浏览量:31次

  • 美国政府开放数据的元数据标准对我国的启示

    美国政府开放数据的元数据标准对我国的启示

    从 2012 年至今,我国已相继上线近 20 个地方政 府开放数据的门户网站,国家层面的统一数据门户 网站 www.data.gov.c……查看详情

    发布时间:2019.08.27来源:大连海事大学交通运输管理学院浏览量:43次

  • 国内数据治理有何新动向?

    国内数据治理有何新动向?

    大数据时代,大数据技术在飞速的发展,逐渐的,大数据融入了各行各业,并且深受各大企业的喜欢,为了让各个企业的数据资产得到充分的利用,数据治……查看详情

    发布时间:2019.09.23来源:知乎浏览量:51次

  • 数据集成的原理

    数据集成的原理

    在Experian Data Quality上多次使用这个类比,但这仅仅是因为它在引用数据标准化时非常有意义。 数据标准化只是构建……查看详情

    发布时间:2018.12.29来源:数据治理浏览量:50次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议