大数据治理的新范例

发布时间:2018.12.26来源:亿信华辰浏览量:107次标签:数据治理


数十年来,数据科学家已经拥有沙箱来探索数据并找到有价值的见解。在看似愉快的折衷方案中,分析师可以快速加载,操纵和组合企业和行业数据,以寻找新的见解和预测,而无需担心它们会危及敏感数据或生产工作流程。虽然这加速了创造新的见解,但将它们投入生产是一场噩梦。在未部署的环境中创建的一组自定义代码和数据需要在部署之前进行转换,质量控制和优化。企业通常需要一年的大部分时间才能从几周内收集的洞察中获得价值。 

大数据的幽灵有可能使情况变得更糟- 在很大程度上。现在,分析师们正在使用IT外部的数据结构和编程语言。外部数据源的数量和复杂性正在爆炸式增长。如果没有新的方法,在大数据沙箱中发现的洞察力可能永远不会投入生产。 

所出现的是一种新的范例,它将数据治理- 大多数分析师的诅咒这一术语 - 带入了大数据。但是,大数据治理不是严格限制数据使用和文档,而是灵活,协作和高效。它使分析师参与而非分离,以获取他们的学习以加速生产准备。最重要的是,它取代了沙箱数据的大规模转换,并采用“促销”流程,确保分析数据在大数据平台上生产就绪。 

大数据治理要求我们从头开始重新思考治理。大数据治理不是物理地分离沙箱和生产数据,而是逻辑地控制访问和使用,因为数据从“原始”到“准备”成熟。您如何判断数据是否已准备好生产?元数据。任何支持生产使用的大数据平台都必须具有跟踪数据摄取,验证,准备和使用生命周期的元数据。元数据需要管理数据访问权限,捕获数据分析结果以及数据开发人员和最终用户的评论。元数据存储定义生产准备的策略,并能够实施它们。没有元数据,数据湖就变成了数据沼泽。 

但为了实现这一点,元数据捕获必须是自动化和相关的。大数据治理的第二个原则与当前的教条相矛盾:从一开始就使用模式来丰富元数据。大多数业务数据都是结构化的,无论是关系数据库,日志文件,XML还是大型机副本。该结构可用于自动评估原始数据的质量,完整性和内容。这不仅为分析师提供了对数据的洞察力,还建立了一个可以构建的元数据基础。

大数据治理的第三个原则是记分卡驱动的优先级。并非所有数据都需要严格的质量和访问管理。实际上,假设大多数原始数据都不会被使用- 因此丰富其元数据是浪费时间。相反,记分卡是为数据的各种用途而创建的 - 合规报告,营销分析,供应链分析等。某些策略适用于所有记分卡 - 需要屏蔽PII数据 - 其他则非常具体 - 需要数据沿袭所有合规报告。使用元数据基础,可以轻松地为任何数据集创建记分卡。然后,这些记分卡用于识别治理工作并确定其优先级,以使最重要的数据生产就绪。 

从哪儿开始?如果您的数据库元数据较差,那么就建议您先评估现有资产的质量和内容。自动化工具可以填充元数据存储库,作为创建记分卡的基础。使湖泊的内容和质量透明是迈向大数据治理的第一步。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理为什么会重新引起关注?

    数据治理为什么会重新引起关注?

    这突出了数据治理的重要性。由数据治理研究所定义为“信息相关过程的决策权和责任系统,根据商定的模型执行,描述谁可以采取什么行动与什么信息,……查看详情

    发布时间:2019.09.04来源:知乎浏览量:158次

  • 数据治理的战略转变

    数据治理的战略转变

    正在进行的思维方式和工具集战略转变正在改变主要思想家如何重新考虑他们的数据治理方法。治理的核心是变革管理。……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:114次

  • 数据分析加数据治理-让数据清澈如水

    数据分析加数据治理-让数据清澈如水

    在如今数据大浪潮下,如果您的业务很多,那么它就会大量堆积并且产生新的问题。我们生活在一个数据驱动的世界里。数据推动了我们从不同地方获得的……查看详情

    发布时间:2019.08.30来源:浏览量:144次

  • 数据指标体系搭建实践:指标管理四步法

    数据指标体系搭建实践:指标管理四步法

    因为不同人对于一个指标口径的理解,会存在偏差的,比如对于“新用户”这个原子指标的定义口径,有的人是理解为当日新注册的用户为新用户,而有些……查看详情

    发布时间:2020.09.21来源:头条浏览量:157次

  • 业务流程建模及其在企业中的作用

    业务流程建模及其在企业中的作用

    为实现其目标,组织必须完全了解其流程。因此,业务流程设计和分析是定义业务运营方式的关键,并确保员工理解并负责履行其职责。……查看详情

    发布时间:2019.02.18来源:亿信华辰浏览量:178次

  • 睿治元数据管理系统如何助力解决元数据管理难题

    睿治元数据管理系统如何助力解决元数据管理难题

    亿信华辰睿治数据治理平台先进的产品设计理念,充分依照国际规范、标准,具有国内先进水平。其广泛应用了MQ、分布式计算、zookeeper等……查看详情

    发布时间:2021.08.13来源:亿信华辰浏览量:139次

  • 2019年三种降低公司数据风险的方法

    2019年三种降低公司数据风险的方法

    企业家是自然风险承担者,风险是发展业务的必要条件。但是,一些风险不在商业领袖的控制范围之内,因此必须考虑这些外部因素,以确保企业的整体寿……查看详情

    发布时间:2019.01.03来源:数据治理浏览量:99次

  • 企业数据治理的九大要素

    企业数据治理的九大要素

    元数据管理致力于处理技术元数据、业务元数据、管理元数据,通过丰富的元数据分析和检核,帮助各行各业用户获得更多的数据洞察力,进而挖掘出隐藏……查看详情

    发布时间:2020.07.10来源:知乎浏览量:215次

  • 数据清洗与数据治理的3个不同点

    数据清洗与数据治理的3个不同点

    ​数据清洗,是指发现并纠正数据文件中可识别的错误的最后一道程序,是数据治理工作中必不可少的一项关键任务,是数据治理的子集.……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:1141次

  • 数据治理之“术”金融业如何做好数据治理工作

    数据治理之“术”金融业如何做好数据治理工作

    数据治理之“术”金融业如何做好数据治理工作就如何做好数据治理工作,可参考以下四点意见。……查看详情

    发布时间:2019.12.12来源:知乎浏览量:116次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议