数据治理之“术”金融业如何做好数据治理工作

发布时间:2019.12.12来源:知乎浏览量:1次标签:数据治理

数据治理之“术”
就如何做好数据治理工作,可参考以下四点意见。

其一,做好顶层设计,把数据规划好。数据治理是一项长期、复杂的系统工程,要在组织、机制和标准等方面加强统筹谋划。一是优化组织架构。充分认识数据的重要战略意义,将数据治理纳入企业中长期发展规划,及时调整组织架构,明确内部数据管理职责,理清数据权属关系,自上而下推动数据治理工作。二是完善应用机制。在保障各方数据所有权不变前提下,统筹规划全局数据架构,完善跨机构、跨领域数据融合应用机制,实现数据规范共享和高效应用。三是构建标准体系。建立涵盖金融数据采集、处理、使用等全流程的标准体系,打造金融数据的“通用语言”,提升金融数据质量,为数据互通、信息共享和业务协同奠定坚实基础。

其二,健全治理体系,把数据管理好。一是做好数据资产管理。根据统一的数据标准体系,建立全局数据模型和科学合理的数据架构。在此基础上,管理维护全局数据资产目录,实现对数据资产的全面梳理和有效管控,解决数据质量不高、数据利用不足等问题。二是做好数据分级管理。综合国家安全、公众权益、个人隐私和企业合法利益等因素,制定数据分级标准,基于全局数据资产目录将数据进行分级。针对不同等级数据采取差异化的控制措施,实现数据精细化管理。三是做好数据共享管理。规范数据共享流程,确保数据使用方在依法合规、保障安全前提下,根据业务需要申请使用数据。数据所有方按规则审核确定数据使用范围、共享方式等,通过数据交换机制实现数据有序流转和安全应用。

其三,加强安全管控,把数据保护好。要遵循“用户授权、最小够用、全程防护”原则,充分评估潜在风险,把好安全关口,加强数据全生命周期安全管理,严防用户数据的泄露、篡改和滥用。在采集环节,要向被采集用户进行明示,明确告知采集和使用的目的、方式以及范围,在获取用户授权后方可采集。在存储环节,通过特征提取、标记化等技术将原始信息进行脱敏,并与关联性较高的敏感信息进行安全隔离、分散存储,严控访问权限,降低数据泄露风险。在使用环节,借助模型运算、多方安全计算等技术,在不归集、不共享原始数据前提下,仅向外提供脱敏后的计算结果。

其四,强化科技赋能,把数据应用好。数据治理的核心环节是数据应用,要从算力、算法、存储、网络等维度加强技术支撑,切实增强数据应用能力。在算力方面,加快分布式架构转型,充分发挥云计算等技术高性能、低成本、可扩展的优势,满足海量数据分析处理对计算资源的巨大需求。在算法方面,基于深度学习、神经网络等技术设计数据模型和分析算法,提升数据洞察能力和基于场景的数据挖掘能力,为数据插上翅膀,让数据在金融领域展翼翱翔。在存储方面,探索与互联网交易特征相适应、与金融信息安全要求相匹配的数据存储方案,稳步推动分布式数据库金融应用,实现数据高效存储和弹性扩展。在网络方面,运用物联网技术丰富数据采集维度,利用5G技术带宽大、速度快、延时低等优势提升数据流转效率,打造金融数据“高速公路”。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议