如何保证数据质量?针对性业务方面的数据质量如何提升

发布时间:2019.11.15来源:知乎浏览量:146次标签:数据治理

平时企业都会处理数据质量的问题,越来越能够懂得数据库整套系统的运行模式和模型概念,深深觉得数据挖掘的本质其实不仅仅是从海量的数据中发现有效的,有用的,有目的性的数据,深入来说,如果大数据平台里的数据质量根本无法保证,那么数据挖掘就是毫无意义的,命中率和精确度根本没有参考价值。但是问题就出在这里,外围系统抽取隔离的数据,要怎么样清洗和梳理才能够在数据的源头上尽可能的提高数据质量?不可能每个人都懂业务,对针对性业务方面的数据质量如何提升。

每个企业都会存在数据质量问题。所有人都知道数据分析、数据挖掘的80%工作量都在数据处理上。但是与数据分析、数据挖掘红得发紫的热度相比,数据处理显得冷清多了。

业务数据的生命周期说起。

数据的流转分为四个步骤:数据的产生、存储、加工和使用。

数据质量在这四个环节均会产生。所以需要有不同的手段。


在各个环节控制质量的最开始,我们需要对数据质量管理进行标准定义处理。即对元数据进行梳理,并按照元数据管理理念,对各个环节的数据进行管控。在此只探讨结构化数据,非结构化数据可以结构化之后再以此法继续。

0、元数据管理

元数据管理简单来说,就是建立一套标准的指标(度量)、口径(维度)等体系,建立相关的单位、分组等支撑信息。目的是保证各环节的数据一致性和统一性。

1、数据产生阶段的质量管理手段

方法:控制输入

尽可能的使用非开放式的输入手段,如下拉菜单、单复选框、时间控件、标签(支持自定义学习型)等。必须开放的输入部分,进行必要的校验。

互联网行业的log数据质量之高,简直不需要进行此步骤的管理!可以说互联网的log分析直接推动了大数据分析发展的进程。

2、数据存储阶段的质量管理手段

方法:数据统一在数据结构设计时,就应该按照标准对相同含义的字段统一命名、格式、精度等,排除数据的歧义。

3、数据加工阶段的质量管理手段

方法:数据清洗数据加工阶段的目的非常明确,但数据问题繁多,不同的问题需要使用不同的手段处理,详细操作手段见另外一个回答:数据挖掘中常用的数据清洗方法有哪些?

4、数据使用阶段的质量管理手段

数据使用阶段还需要质量管理?当然!无论是在数据分析还是数据挖掘之后,结果自然是要保存下来的,此时的数据仍然要按照标准,进行规范的管理,无论是存储结果的表名,还是字段、格式等。此外,在数据分析、挖掘的时候,也会有新的数据产生,此时依然需要进行标准化之后进行统一管理。

5、数据质量的持续监控和完善

数据质量管理并不是一个流程做完就结束了。如同戴明环一样,数据质量同样要建立一个环,不断发现问题,弥补问题。在各个环节新发现的各种问题,定期进行分析,确定应对方案,并加以改进。质量乃数据之根本,没有质量,数据便不可信,在此之上的数据分析、数据挖掘更是一纸空谈,甚至是大谬论。

工欲善其事,必先利其器,检测之前咱们有必要对检测工具有基本的认知:


亿信数据质量管理平台提供从标准定义、质量监控、绩效评估、质量分析、质量报告、重大问题及时告警、流程整改发起、系统管理等数据质量管理全过程的功能。通过事先定义好的规则、调度时间、工作流程,自动完成数据的质量检查,极大的减少人力的投入和过程干预,提升效率,减少误差。 同时遇到重大问题能够及时警告,对质量检查的结果提供多方式(界面、邮件、短信)告警,让用户及时了解到系统检查结果,避免重大问题的延误。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 世界各地的组织如何处理数据治理

    世界各地的组织如何处理数据治理

    在2019年G20大阪峰会召开的同时,我很幸运能够在整个六月的整个月里在东京办公室工作。这是一个有趣的事件,引起我注意的主要议题之一是“……查看详情

    发布时间:2019.07.11来源:知乎浏览量:119次

  • 元数据到元数据治理,这一篇文章就够了

    元数据到元数据治理,这一篇文章就够了

    “元数据管理是企业数据治理的基础”,在数据治理战略实施的时候,这是我们经常会听到看到的一句话。但是,数据治理的概念在国内还并未普及,如何……查看详情

    发布时间:2020.08.14来源:亿信华辰浏览量:118次

  • “安全”与“共享”同行,大数据正改变着世界

    “安全”与“共享”同行,大数据正改变着世界

    什么是大数据?早在2011年,世界著名咨询公司麦肯锡就曾在《大数据:下一个创新、竞争和生产力的前沿》报告中对其进行了基础定义:“大数据是……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:130次

  • 新的独立全球分析师研究强调数据治理挑战

    新的独立全球分析师研究强调数据治理挑战

    佛罗里达州奥兰多,10月14日-交付 分析的未来,Pentaho的,一个日立数据系统公司今天宣布,由Forrester咨询公司进行的2……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:118次

  • 大数据治理——元数据是关键

    大数据治理——元数据是关键

    在大数据时代,当数据以多种格式分散在整个企业中并来自许多来源时,需要一种新的数据治理方法。……查看详情

    发布时间:2018.12.03来源:数据管理浏览量:89次

  • 数据资产管理经验干货心得分享

    数据资产管理经验干货心得分享

    数据资产的定义是是指由企业拥有或企业控制的,能够为企业带来未来经济利益的,以物理或电子的方式记录的数据资源,如文件资料,电子数据等。在企……查看详情

    发布时间:2020.08.19来源:微信浏览量:104次

  • 主数据管理对生产率改善、风险管理、成本降低等方面均有显著的好处

    主数据管理对生产率改善、风险管理、成本降低等方面均有显著的好处

    什么是MDM(Master Data Management)? 主数据管理是旨在创建和维护权威、可靠、可持续、准确、及时和安全的环境的……查看详情

    发布时间:2020.09.03来源:知乎浏览量:117次

  • 盘点数据治理的6个价值

    盘点数据治理的6个价值

    ​随着大数据的发展,各行各业都面临越来越庞大且复杂的数据,这些数据如果不能有效管理起来,不但不能成为企业的资产,反而可能成为拖累企业的“……查看详情

    发布时间:2022.06.15来源:互联网浏览量:248次

  • 善治:良好学校的基础

    善治:良好学校的基础

    包机行业的头号问题是什么?大卫弗兰克认为缺乏董事会治理能力。弗兰克说:“强大的董事会将改善特许学校的许多实践问题,从那些正在努力进入高绩……查看详情

    发布时间:2019.03.06来源:亿信华辰浏览量:102次

  • 企业数据治理的九大要素

    企业数据治理的九大要素

    元数据管理致力于处理技术元数据、业务元数据、管理元数据,通过丰富的元数据分析和检核,帮助各行各业用户获得更多的数据洞察力,进而挖掘出隐藏……查看详情

    发布时间:2020.07.10来源:知乎浏览量:203次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议