如何保证数据质量?针对性业务方面的数据质量如何提升

发布时间:2019.11.15来源:知乎浏览量:155次标签:数据治理

平时企业都会处理数据质量的问题,越来越能够懂得数据库整套系统的运行模式和模型概念,深深觉得数据挖掘的本质其实不仅仅是从海量的数据中发现有效的,有用的,有目的性的数据,深入来说,如果大数据平台里的数据质量根本无法保证,那么数据挖掘就是毫无意义的,命中率和精确度根本没有参考价值。但是问题就出在这里,外围系统抽取隔离的数据,要怎么样清洗和梳理才能够在数据的源头上尽可能的提高数据质量?不可能每个人都懂业务,对针对性业务方面的数据质量如何提升。

每个企业都会存在数据质量问题。所有人都知道数据分析、数据挖掘的80%工作量都在数据处理上。但是与数据分析、数据挖掘红得发紫的热度相比,数据处理显得冷清多了。

业务数据的生命周期说起。

数据的流转分为四个步骤:数据的产生、存储、加工和使用。

数据质量在这四个环节均会产生。所以需要有不同的手段。


在各个环节控制质量的最开始,我们需要对数据质量管理进行标准定义处理。即对元数据进行梳理,并按照元数据管理理念,对各个环节的数据进行管控。在此只探讨结构化数据,非结构化数据可以结构化之后再以此法继续。

0、元数据管理

元数据管理简单来说,就是建立一套标准的指标(度量)、口径(维度)等体系,建立相关的单位、分组等支撑信息。目的是保证各环节的数据一致性和统一性。

1、数据产生阶段的质量管理手段

方法:控制输入

尽可能的使用非开放式的输入手段,如下拉菜单、单复选框、时间控件、标签(支持自定义学习型)等。必须开放的输入部分,进行必要的校验。

互联网行业的log数据质量之高,简直不需要进行此步骤的管理!可以说互联网的log分析直接推动了大数据分析发展的进程。

2、数据存储阶段的质量管理手段

方法:数据统一在数据结构设计时,就应该按照标准对相同含义的字段统一命名、格式、精度等,排除数据的歧义。

3、数据加工阶段的质量管理手段

方法:数据清洗数据加工阶段的目的非常明确,但数据问题繁多,不同的问题需要使用不同的手段处理,详细操作手段见另外一个回答:数据挖掘中常用的数据清洗方法有哪些?

4、数据使用阶段的质量管理手段

数据使用阶段还需要质量管理?当然!无论是在数据分析还是数据挖掘之后,结果自然是要保存下来的,此时的数据仍然要按照标准,进行规范的管理,无论是存储结果的表名,还是字段、格式等。此外,在数据分析、挖掘的时候,也会有新的数据产生,此时依然需要进行标准化之后进行统一管理。

5、数据质量的持续监控和完善

数据质量管理并不是一个流程做完就结束了。如同戴明环一样,数据质量同样要建立一个环,不断发现问题,弥补问题。在各个环节新发现的各种问题,定期进行分析,确定应对方案,并加以改进。质量乃数据之根本,没有质量,数据便不可信,在此之上的数据分析、数据挖掘更是一纸空谈,甚至是大谬论。

工欲善其事,必先利其器,检测之前咱们有必要对检测工具有基本的认知:


亿信数据质量管理平台提供从标准定义、质量监控、绩效评估、质量分析、质量报告、重大问题及时告警、流程整改发起、系统管理等数据质量管理全过程的功能。通过事先定义好的规则、调度时间、工作流程,自动完成数据的质量检查,极大的减少人力的投入和过程干预,提升效率,减少误差。 同时遇到重大问题能够及时警告,对质量检查的结果提供多方式(界面、邮件、短信)告警,让用户及时了解到系统检查结果,避免重大问题的延误。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 2句话告诉你什么是数据治理

    2句话告诉你什么是数据治理

    数据治理是实践和流程的集合,有助于确保组织内数据资产的正式管理。数据治理通常包括其他概念,例如数据管理,数据质量等,以帮助企业更好地控制……查看详情

    发布时间:2021.04.28来源:亿信数据治理知识库浏览量:107次

  • 数据治理是中小银行决胜数字化转型成功的关键

    数据治理是中小银行决胜数字化转型成功的关键

    未来,银行的资产不是现金等实物,而是“数据”。因此有效的数据治理是银行实现数字化转型的基础。目前,中小银行在业务发展中逐渐积累了大量的内……查看详情

    发布时间:2019.12.13来源:知乎浏览量:122次

  • 数据质量提升的必要性

    数据质量提升的必要性

    高质量的数据对管理决策,业务支撑都有极其重要的作用。有些项目在初期由于并没有考虑数据质量的因素,导致了项目实施后期才发现,由于数据质量问……查看详情

    发布时间:2022.02.18来源:小亿浏览量:610次

  • 新白皮书提供数据治理计划实施技巧

    新白皮书提供数据治理计划实施技巧

    实施数据治理计划 - 一系列标准化管理实践,以解决数据的创建,使用和报告问题 - 有助于确保医疗保健组织内的大量数据得到质量,可访问性和……查看详情

    发布时间:2018.11.21来源:数据治理浏览量:119次

  • 谈谈工业企业数据治理建设的趋势

    谈谈工业企业数据治理建设的趋势

    工业企业数据环境复杂,数据类型多、产生速度快、数据量大、数据质量不高、数据人才匮乏,因此如何发挥和挖掘数据要素的价值成为当代企业关注的话……查看详情

    发布时间:2022.06.28来源:互联网浏览量:347次

  • 做好大数据治理才能建设好大数据平台

    做好大数据治理才能建设好大数据平台

    数据量不断的增加,对数据分析和管理带来了挑战,分析数据背后的价值也为企业发展,社会进步带来了机遇。因此各行各业开始建设大数据平台,大数据……查看详情

    发布时间:2019.08.15来源:知乎浏览量:142次

  • 数据在数字化转型时代的作用

    数据在数字化转型时代的作用

    说今天的商业环境变得极具竞争力可能是轻描淡写的,那些没有不断重塑业务的公司 - 以核心数据 - 最终会在市场中断的同时观望。数据技术,科……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:131次

  • 为数据管理/数据质量/问题分析提供资金

    为数据管理/数据质量/问题分析提供资金

    大多数具有正式数据治理工作的组织都对正在进行的数据管理工作给予了高度关注,解决了利益相关者之间发生自然冲突和/或数据质量工作时出现的问题……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:132次

  • 数据资产管理方案之如何让数据化为价值

    数据资产管理方案之如何让数据化为价值

    数据是资产的概念已经成为行业共识。然而现实中,对数据资产的管理和应用往往还处于摸索阶段,数据资产管理面临诸多挑战。主要分为以下三点:1、……查看详情

    发布时间:2020.08.14来源:知乎浏览量:184次

  • 大数据治理的新范例

    大数据治理的新范例

    大数据治理不是严格限制数据使用和文档,而是灵活,协作和高效。它使分析师参与而非分离,以获取他们的学习以加速生产准备。……查看详情

    发布时间:2018.12.26来源:亿信华辰浏览量:112次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议