数据治理:推动结果的引擎

发布时间:2019.01.26来源:亿信华辰浏览量:160次标签:数据治理


组织成功取决于某些与共同业务目标一致的构建块。这些构建块包括业务活动,数据和分析。

治理也是必要的构建模块之一,因为它提供了标准中的凝聚力,使人员,流程,数据和技术与成功和可持续的结果保持一致。虽然它有点抽象概念,但数据治理是帮助组织将数据用作公司资产的基础。

获取资产并用于帮助组织执行其业务模型。资产管理原则要求对具有优化技能和经验的授权人员进行编目,库存,保护和访问资产。

如果资产具有高利用率,则资产通常会产生更多价值。在数据环境中,这意味着受管理的数据资产如果能够在分析的支持下加强现有运营并指导改进,将更有价值。

随着企业通过在更多业务功能中实施更广泛的分析足迹来寻求释放更多价值,数据治理将指导他们的旅程。

 数据的新视角

成为一个数据驱动的企业意味着根据经验证据做出决策,而不是“直觉”。这种转变需要一个清晰的愿景,战略和有纪律的执行。必须仔细考虑,理解并传达给他人所需的商业机会 - 从C套件到前线。

想要在数字时代取得成功的组织了解他们的文化以及他们的决策过程必须变得更加主动和协作。当然,数据是业务绩效和持续改进的核心。

在这个大数据的现代时代,外部产生的非传统数据集正在与内部产生的传统数据相结合。因此,数据驱动成功的一个关键因素是将数据的长期视角转变为成本中心,几乎没有任何投资可以为组织释放其价值。

基于分析的数据驱动改变了这种心态。企业领导者确实开始意识到,在整个组织中使数据更易于访问和使用有助于实现他们想要实现的结果 - 并且必须向他们的董事会报告。

如果将传统资产管理概念应用于数据,则可以定义和实现安全性,质量,编目,定义,置信度,授权和可访问性的目标。然后,这些区域成为新数据资产类别的性能标准。

因此,改变组织的领导力和其他文化,将数据视为资产,将其分类从“成本”转变为“投资”。有价值的资产可以获得财务回报和燃料生产率。它们也可以重新投资或重新使用。

数据治理是数据作为资产的新视角的关键。

数据治理定义和目的

数据治理对于现代经济非常重要,因为它可以将数据转换为有价值的资产,从而提高最高和最低绩效。在一系列业务改进用例中,管理良好的数据是可访问的,有用的和相关的。

但是在实施数据治理的早期阶段,组织往往难以定义和组织数据治理,包括确定涉及哪些任务。

数据治理的核心是一个跨职能的程序,用于开发,实施,监控和实施可改善选定数据资产性能的策略。

实施数据治理可确保“资产级”数据可用于支持基于高级分析的决策制定。利用这一基本原理,可以定义满足组织战略意图的潜在目标,以获得价值。

以下列出了数据治理计划的可能目标:

  • 提高数据安全性
  • 提高数据质量
  • 让更多利益相关者更容易获取数据
  • 增加数据理解
  • 提高数据消费者的信心
  • 提高数据素养并确定组织的数据驱动成熟度级别

建立数据治理基金会

除了计划如何适应虚拟或物理团队的现有公司结构外,数据治理计划的范围和结构对于确定和包括职责,责任,决策权和权限级别非常重要。

结构选项包括自上而下的命令和控制以及自下而上的协作网络。还应概述执行责任。

数据执行人员(例如首席数据官)被确定为对整体数据治理结果负责是很常见的。数据所有者是管理生成关键数据的流程的业务领导者。他们负责定义支持该计划目标的政策。

数据管理员向数据所有者报告,并负责将数据策略转换为分配给数据专家的操作。数据专家执行项目和其他工作流程,以确保受管理的数据符合策略的意图。

数据管理员构成了数据治理计划的支柱。它们通过将任务分配给专家来影响数据的管理方式。数据管理员负责编目,定义和描述受管数据资产。

这些角色可以是全职或兼职,具体取决于工作范围。

数据治理团队执行的关键流程包括:

  1. 定义和规划程序的范围
  2. 数据质量改进
  3. 数据安全性改进
  4. 元数据创建和管理
  5. 评估新数据源的适用性
  6. 监控并强制遵守数据策略
  7. 研究新的数据来源
  8. 培训以提高各级工作人员的数据素养
  9. 促进和寻找新的数据驱动机会,以改善业务
  10. 领导和管理文化变革

数据治理基于一种策略,该策略定义数据资产的外观和执行方式,包括质量,安全性,集成,可访问性等级。数据治理程序的设计和实现应从有限的范围开始,然后逐步提升支持整体业务战略。所以想想大,但从小做起。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 业务流程建模与标准操作过程之间的联系

    业务流程建模与标准操作过程之间的联系

    我们上周开始了一个关于业务流程(BP)建模及其在企业中的角色的新博客系列。本周的重点是业务流程建模和标准操作过程之间的联系。具体而言,使……查看详情

    发布时间:2019.02.18来源:亿信华辰浏览量:138次

  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:137次

  • 主数据管理第二步——体系构建

    主数据管理第二步——体系构建

    “纸上得来终觉浅,绝知此事要躬行。”然而主数据管理工作该怎么做?流程是怎样的?责任如何落实?……这些问题无不与主数据管理体系的构建有着密……查看详情

    发布时间:2019.10.24来源:亿信华辰浏览量:163次

  • 做数据的守护者亿信华辰推新一代数据治理解决方案

    做数据的守护者亿信华辰推新一代数据治理解决方案

    为帮助银行业客户满足监管合规的要求,亿信华辰在2018年推出了最新版的数据治理解决方案,其中包含数据治理组织架构的建设、数据管理专项工作……查看详情

    发布时间:2019.10.24来源:知乎浏览量:113次

  • 数据治理在有效合规计划中的作用

    数据治理在有效合规计划中的作用

    有效的合规计划由许多活动部分组成。关键数据来自运行操作所需的各种工具,文档,系统和技术。因此,企业在试图获得任何特定时间的风险状况的完整……查看详情

    发布时间:2018.12.20来源:亿信华辰浏览量:158次

  • 可靠的数据治理策略对组织的重要性

    可靠的数据治理策略对组织的重要性

    数据管理已从仅由IT部门访问的集中数据发展为存储在数据仓库中的大量数据。输入数据治理。……查看详情

    发布时间:2019.01.16来源:亿信华辰浏览量:152次

  • 数据湖与数据仓库之间的桥梁

    数据湖与数据仓库之间的桥梁

    数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相……查看详情

    发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:154次

  • 管理数据与拥有数据一样重要:关注数据治理和数据质量

    管理数据与拥有数据一样重要:关注数据治理和数据质量

    在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟……查看详情

    发布时间:2019.09.20来源:知乎浏览量:176次

  • 数据治理与数据质量有何不同?

    数据治理与数据质量有何不同?

    当下是一个大数据的时代,有越来越多的企业开始应用大数据来创造价值,为了能够充分的利用数据价值,企业需要对数据进行管理,当我们听到数据管理……查看详情

    发布时间:2019.07.26来源:知乎浏览量:157次

  • 数据治理与IT治理的区别

    数据治理与IT治理的区别

    最近,我们一直专注于数据治理,从数据中获取最大价值并防止下一次重大漏洞,我们中的许多人忽略了IT治理基础,这有助于我们实现卓越的数据治理……查看详情

    发布时间:2018.11.15来源:Cindy Ng浏览量:200次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议