提高数据质量的方法

发布时间:2019.11.15来源:知乎浏览量:143次标签:数据治理

1、明确业务需求并从需求开始控制数据质量
要想真正解决数据质量问题,应该从需求开始,企业往往在定义清楚业务需求后忽略对数据质量的控制,而只对已经产生的数据做检查,然后再将错误数据剔除,这种方法治标不治本,不能从根本上解决问题。

企业需要将数据质量的控制从需求开始集成到分析人员、模型设计人员与开发人员的工作环境中,让大家在日常的工作环境中自动控制数据质量,在数据的全生命周期中控制数据质量。

2、建立数据质量管理机制
从业务出发做问题定义,由工具自动、及时发现问题,明确问题责任人,通过邮件、短信等方式进行通知,保证问题及时通知到责任人。跟踪问题整改进度,保证数据质量问题全过程的管理。

(1)探查数据内容、结构和异常通过探查,可以识别数据的优势和弱势,帮助企业确定业务实施计划。一个关键目标就是明确指出数据错误和问题,例如将会给业务流程带来威胁的不一致和冗余。

(2)建立数据质量度量并明确目标企业需建立一个共同的平台并完善度量标准,用户可以在数据质量记分卡中跟踪度量标准的达标情况,并通过电子邮件发送URL来与相关人员随时进行共享。

(3)设计和实施数据质量业务规则明确企业的数据质量规则,即可重复使用的业务逻辑,管理如何清洗数据和解析用于支持目标应用字段和数据。业务部门和IT部门通过使用基于角色的功能,一同设计、测试、完善和实施数据质量业务规则,以达成最好的结果。

(4)将数据质量规则构建到数据集成过程中

数据质量服务由可集中管理、独立于应用程序并可重复使用的业务规则构成,可用来执行探查、清洗、标准化、名称与地址匹配以及监测。

在企业大数据治理过程中,对于大数据生产线中的每个集成点,都需要做数据质量的检查,严格控制输入数据的质量。比如在数据采集过程,集成过程,分析过程等等都需要做检查。

但在大数据环境中,每个集成点都会有海量数据量流过,把数据逐条检查这种传统方式是行不通的,应该采用抽样的方式,对一批数据做数据质量的检查,来确定这批数据是否满足一定的质量区间,再决定是否需要对这批数据做详细的检查。

(5)检查异常并完善规则

在执行数据质量流程后,大多数记录将会被清洗和标准化,并达到企业所设定的数据质量目标。然而,无可避免,仍会存在一些没有被清洗的劣质数据,此时则需要完善控制数据质量的业务规则。

目前企业内的数据主要分为外部数据和内部数据,大数据时代到来让各企业广泛采购第三方数据,第三方数据的质量逐渐成为决定企业数据质量的关键因素。

对于企业的内部数据,可以通过业务梳理直接获得质量检核规则。但是对于外部第三方数据,需要先对这些数据进行采样,并应用关联算法自动发现其中的质量检核规则,并将这些检核规则持续积累,形成外部数据的检核规则库。

(6)对照目标,监测数据质量

数据质量控制不应为一次性的“边设边忘”活动。相对目标和在整个业务应用中持续监测和管理数据质量对于保持和改进高水平的数据质量性能而言是至关重要的。可选择仪表板和报告进行监测。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的数据架构:主动方法

    数据治理的数据架构:主动方法

    “数据架构是业务战略的物理实现,” 全球数据战略有限公司 EMEA首席顾问Nigel Turner在DATAVERSITY® 企业数据治……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:122次

  • 治理和管理

    治理和管理

    以问责制为重点的数据管理定义是“确保数据相关工作根据通过治理建立的政策和实践来执行的一系列活动。”……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:123次

  • 大数据环境下我国政府数据开放及应用研究

    大数据环境下我国政府数据开放及应用研究

    在当前政府各项工作开展过程中, 政府数据管理属于十分重要的一项任务及内容, 对于政府各项政务工作的开展均具有十分重要的作用及意义。……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:89次

  • 数据交换如何“主动出击”?

    数据交换如何“主动出击”?

    传统的数据交换,一般说来是用户根据自身的数据抽取需求,配置好相关的设置,定义好数据抽取时间来进行数据交换。这是一种被动式的数据交换,如果……查看详情

    发布时间:2020.09.27来源:头条浏览量:112次

  • 当前企业的数据治理之困

    当前企业的数据治理之困

    只有确保数据的标准化、规范化、可信可用,才能进一步通过数据运营、数据应用帮助企业实现数据资产管理、发现内部数据问题、发掘数据价值,进而实……查看详情

    发布时间:2020.06.28来源:知乎浏览量:158次

  • 数据治理在有效合规计划中的作用

    数据治理在有效合规计划中的作用

    有效的合规计划由许多活动部分组成。关键数据来自运行操作所需的各种工具,文档,系统和技术。因此,企业在试图获得任何特定时间的风险状况的完整……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:96次

  • 数据治理概述

    数据治理概述

    每天,大学的数据都会被评估,创建,使用,存储,存档,报告或删除。数据治理为罗切斯特的这些信息的定义,交换,完整性和安全性设定了标准和协议……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:199次

  • 企业如何成功的实现数据治理?

    企业如何成功的实现数据治理?

    当下是一个大数据的时代,如果一个企业没有数据,那么在做决策时就缺乏数据的支持,但是如果企业有了数据,不对数据进行治理,那么就无法充分有效……查看详情

    发布时间:2019.07.18来源:知乎浏览量:122次

  • 云中的数据治理

    云中的数据治理

    IT中心,内部部署基础架构变得越来越复杂和昂贵,并且需要高技能的人力,因此企业现在将其IT和数据科学功能转移到云。云计算承诺提供低成本存……查看详情

    发布时间:2018.12.29来源:亿信华辰浏览量:145次

  • 什么是数据集成?

    什么是数据集成?

    数据集成是将来自不同来源的数据组合到统一视图中的过程:从摄取,清理,映射和转换到目标接收器,最后使数据对访问它的人更具可操作性和价值。 ……查看详情

    发布时间:2018.12.20来源:数据治理浏览量:111次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议