多措并举提升银行业数据治理能力

发布时间:2019.12.13来源:知乎浏览量:155次标签:数据治理

数据治理是银行业高质量发展的必由之路,当前银行业的数字化转型面临一些挑战和不足,要从建立数据治理架构、统一数据标准、加强数据分析应用等方面提升银行业数据治理能力。


银行业属于典型的数据驱动行业。经过多年积累,银行业金融机构积累了大量客户数据、交易数据、外部数据等。提高数据管理与治理能力、构建数字化经营能力,对提高银行经营质效,增强市场竞争力具有重要意义。

在向着数字化快速转型的同时,银行业数据治理还面临着一些挑战和不足,包括数据整合度不高、数据标准度不高、数据应用难、数据治理人才储备不足等。

“银行内部数据虽多,涉及各个业务条线、各个部门,但数据分布零散化,搜集整合存在错配,未能实现大数据集中化管理,也缺乏对数据全口径和全生命周期性的管理。同时银行内部缺乏统一的数据标准或统计标准,数据的真实性、准确性、连续性等难以保证,数据质量参差不齐。”

数据应用方面,他表示,数据管理部门与银行业务部门之间未能形成良好协同,内部数据的碎片化,数据挖掘与数据应用力度不足,而与外部数据的隔离造成的数据孤岛效应,导致银行数字化转型阻力重重。

银行业金融机构应以问题为导向,多措并举提升数据治理能力,包括逐步建立数据治理架构;制定统一的数据标准,提升数据质量;弥合外部数据鸿沟,建立数据交互机制;加强数据分析应用,发挥数据内在价值;加强合规意识,完善客户个人隐私保护机制等。

下一步,中银协将加强银行业数据标准化和治理工作,研究数据分析、数据安全、数据质量管理等技术标准,形成银行业大数据治理的良好生态。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据质量对数据治理的重要性!

    数据质量对数据治理的重要性!

    人常说“失之毫厘,差之千里”,在数据来源多样化的情况下,数据的可靠性和实用性,直接影响到统计分析是否得到正确的结论,所以说数据的质量尤为……查看详情

    发布时间:2019.11.01来源:知乎浏览量:145次

  • 构建金融大数据标准体系的意义和目标

    构建金融大数据标准体系的意义和目标

    随着政府职能的逐步简政放权,标准作为辅助行业管理、规范行业发展、形成规模化效应的重要手段,将在社会治理体系中发挥更重要的作用。为顺应形势……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:163次

  • 在数字时代管理数据

    在数字时代管理数据

    人类生活在数据时代。今天生成的数据比人类历史上5000年的数据还要多 - 每天大约有2.5亿个字节的数据。……查看详情

    发布时间:2019.04.04来源:亿信华辰浏览量:179次

  • 元数据:数据治理的燃料

    元数据:数据治理的燃料

    企业渴望从可提供竞争优势的数据中获取洞察力。实现这一目标的最常见障碍是数据质量差。如果输入到预测算法的数据是“脏的”(具有丢失或无效的值……查看详情

    发布时间:2019.08.02来源:知乎浏览量:157次

  • 数据共享与开发平台

    数据共享与开发平台

    随着经济和社会信息化进程的不断加快,信息资源已经成为重要的战略资源。促进信息资源共享、加强信息资源开发利用,对于提高经济发展效率和社会管……查看详情

    发布时间:2020.08.14来源:知乎浏览量:132次

  • 如何避免先污染后治理,浅谈数据标准管理的应用

    如何避免先污染后治理,浅谈数据标准管理的应用

    数据质量的提升作为数据治理环节中非常重要的一环,我们的确需要重视,但是我们知其然,还要知其所以然,从数据质量问题出发,我们还得知道到底为……查看详情

    发布时间:2019.12.13来源:亿信华辰浏览量:125次

  • 统一数据交换平台解决方案

    统一数据交换平台解决方案

    随着我国信息化工程建设的迅速发展,各政府部门及各大企业内部都建立了各自的信息处理系统。这些信息系统往往是在不同时期、由不同厂商、在不同平……查看详情

    发布时间:2020.08.07来源:知乎浏览量:167次

  • 数据治理:发现阶段

    数据治理:发现阶段

    从数据治理计划的发现阶段开始,将为您提供更大的成功概率。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:133次

  • 数据治理是否灵活?

    数据治理是否灵活?

    许多组织现在认识到数据治理的必要性,但仍在努力寻找正确的方法来构建它。一个好的方法是——敏捷!……查看详情

    发布时间:2019.01.11来源:亿信华辰浏览量:132次

  • 医疗保健数据治理:预测是什么?

    医疗保健数据治理:预测是什么?

    医疗保健数据治理已经远超过应用程序只是满足合规性标准。医疗费用始终是讨论的主题,健康保险状况和“平价医疗法案”(ACA)等政策也是如此。……查看详情

    发布时间:2018.12.03来源:迈克尔帕斯托雷浏览量:178次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议