数据湖与数据仓库之间的桥梁

发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:160次标签:数据治理

自Pentaho首席技术官James Dixon提出“数据湖”一词以来已经有十年了。这个术语及其底层技术比以往任何时候都热门。

数据湖.jpg

尽管数据仓库(DWH)系统已经存在并得到认可,但数据行业已经接受了更新的存储库,即数据湖,特别是在大数据增长,向云存储的转变以及实施数据仓库之后。 


可以争论的是,数据湖的优势包括:

1、更快的访问:用户可以轻松访问数据湖,从而实现实时分析。

2、适应性:数据湖可以存储小规模或巨大的数据量(甚至PB)。

3、灵活性:数据湖能够处理各种数据类型和数据源。

4、成本效益:与本地数据湖相比,云数据湖更加经济实惠。


数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相关的高昂成本,而DWH在设计和构建复杂数据存储方面可能会非常耗时。


尽管如此,数据湖解决方案通过提供具有成本效益的云存储选项并使界面和功能更易于识别和简化而在竞争中获得了改观。此外,对DWH的需求仍然很高,其好处包括:

1、效率: 数据湖数据是结构化的,可以在几毫秒内检索到。

2、趋势分析:由于数据湖专为查询和分析而设计,因此它包含历史数据,使用户可以随时间回答一系列预定义的问题。

3、治理:由于许多数据湖系统遵循基于内部数据标准和策略的方法(例如Kimball或Inmon),因此可以帮助数据用户就规则,标准和解释达成一致。


面对大数据问题,数据湖的新范例确实可以完美满足AI的需求,但是结构化数据可以更好地为许多分析或业务用户提供服务。因此,结合了结构化和半结构化数据系统的混合解决方案越来越受欢迎。


如今,数据湖和数据湖已成为数据行业公认的存储库。根据业务用途,数据湖和数据湖可以用于不同的目的并提供各种优势。


但是,两个存储系统仍然存在一个共同的未解决问题: 资料品质。著名的80/20数据科学难题,无论您选择何种数据存储方式,都需要80%的时间用于清理而20%的时间用于分析。


关于数据质量的主要区别在于,数据清理是在将数据加载到数据湖之后进行的,而数据质量过程则是在将数据加载到数据湖中之前实施的;在这两种情况下,这将使花费在改进数据质量上的时间相似。


已经创建了平台来解决这个常见的数据质量问题,该问题在整个数据团队中消耗大量的工程时间。


数据质量对于两种类型的数据存储系统都非常重要:

1、数据湖中的数据质量:这可以通过应用有关GDPR或其他数据相关法律的质量规则来防止“脏”数据值馈入AI模型或强制执行数据提供者的数据传递SLA来实现。

2、数据湖中的数据质量:为了使DWH的集成速度更快,至关重要的是能够在几分钟内增加质量层次,加快集成过程和数据质量洞察力。


许多组织正在采用混合存储系统解决方案,这使得在所有存储系统中拥有一致的数据质量视图比以往任何时候都更加重要。因此,实施可在混合方案中使用的数据质量工具对于优化数据系统,授权数据团队和业务部门以及希望将80/20规则反转为80%的分析和20%(或更少)的清理至关重要。


了解更多数据湖或数据治理相关知识:https://www.esenruizhi.com/ 

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 基于大数据的质量管理系统怎么选?

    基于大数据的质量管理系统怎么选?

    对于一个制造企业来说,生产是企业最大的动力,而生产质量也需要进行优化管理,一个好的质量管理会带给企业巨大的发展空间和利润价值。正因如此,……查看详情

    发布时间:2019.11.07来源:知乎浏览量:139次

  • 扩展数据治理 推进数字化转型

    扩展数据治理 推进数字化转型

    数据正在重新定义我们的工作方式。当数据在上升至公司议程的同时,数据治理也得到了更多关注。数据治理正在迅速成为企业战略重点和不可或缺的业务……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:179次

  • 企业架构框架和元模型,指南

    企业架构框架和元模型,指南

    与任何建筑或基础设施项目需要不同的利益相关者和不同的计划视图的方式大致相同,企业架构(EA)也需要相同。……查看详情

    发布时间:2019.02.26来源:亿信华辰浏览量:214次

  • 亿信华辰成为DAMA数据管理知识体系授权培训基地

    亿信华辰成为DAMA数据管理知识体系授权培训基地

    2021年4月,亿信华辰被正式授权为DAMA中国(国际数据管理协会-中国分会)数据管理知识体系培训基地,成为DAMA在数据管理领域专业人……查看详情

    发布时间:2021.06.22来源:亿信华辰浏览量:135次

  • 企业数据治理需要的能力

    企业数据治理需要的能力

    数据治理必然带来新的标准的确立和旧系统的改造,是一个有破有立、无破不立的过程。这一过程设计大量的跨部门、跨条线、跨系统的沟通协调,同时也……查看详情

    发布时间:2021.09.06来源:亿信华辰浏览量:174次

  • 数据治理的未来:平衡数据治理和数据管理

    数据治理的未来:平衡数据治理和数据管理

    如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?在为所有CitizenBank的企业数据创建和实施……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:138次

  • 数据治理为什么成为企业必备?

    数据治理为什么成为企业必备?

    基本概念什么是数据治理?答:又叫”数据管控”。引用《DAMA数据管理知识体系指南》一书给出的定义:数据治理是对数……查看详情

    发布时间:2020.07.29来源:CSDN浏览量:179次

  • 数据科学趋势在2019年

    数据科学趋势在2019年

    在谈到2019年要关注的主要数据科学趋势时,Kaggle的联合创始人兼首席执行官Anthony Goldbloom 预测,很快数据中心将……查看详情

    发布时间:2019.01.04来源:数据治理浏览量:102次

  • 企业如何快速启动数据治理项目呢?

    企业如何快速启动数据治理项目呢?

    企业在运营的过程中通常都会产生各种各样的数据问题,例如各部门数据不一致,导致汇总部门工作效率低,数据错误从而导致做出错误的判断等等,因此……查看详情

    发布时间:2019.07.29来源:头条浏览量:156次

  • 数据治理—做好这些就够了!

    数据治理—做好这些就够了!

    Gartner预测,“到2023年,75%的数据库都将位于云平台上,从而增加了数据治理和集成的复杂性 ”。随着组织收集更多数据(包括在防……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:136次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议