数据湖与数据仓库之间的桥梁

发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:159次标签:数据治理

自Pentaho首席技术官James Dixon提出“数据湖”一词以来已经有十年了。这个术语及其底层技术比以往任何时候都热门。

数据湖.jpg

尽管数据仓库(DWH)系统已经存在并得到认可,但数据行业已经接受了更新的存储库,即数据湖,特别是在大数据增长,向云存储的转变以及实施数据仓库之后。 


可以争论的是,数据湖的优势包括:

1、更快的访问:用户可以轻松访问数据湖,从而实现实时分析。

2、适应性:数据湖可以存储小规模或巨大的数据量(甚至PB)。

3、灵活性:数据湖能够处理各种数据类型和数据源。

4、成本效益:与本地数据湖相比,云数据湖更加经济实惠。


数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相关的高昂成本,而DWH在设计和构建复杂数据存储方面可能会非常耗时。


尽管如此,数据湖解决方案通过提供具有成本效益的云存储选项并使界面和功能更易于识别和简化而在竞争中获得了改观。此外,对DWH的需求仍然很高,其好处包括:

1、效率: 数据湖数据是结构化的,可以在几毫秒内检索到。

2、趋势分析:由于数据湖专为查询和分析而设计,因此它包含历史数据,使用户可以随时间回答一系列预定义的问题。

3、治理:由于许多数据湖系统遵循基于内部数据标准和策略的方法(例如Kimball或Inmon),因此可以帮助数据用户就规则,标准和解释达成一致。


面对大数据问题,数据湖的新范例确实可以完美满足AI的需求,但是结构化数据可以更好地为许多分析或业务用户提供服务。因此,结合了结构化和半结构化数据系统的混合解决方案越来越受欢迎。


如今,数据湖和数据湖已成为数据行业公认的存储库。根据业务用途,数据湖和数据湖可以用于不同的目的并提供各种优势。


但是,两个存储系统仍然存在一个共同的未解决问题: 资料品质。著名的80/20数据科学难题,无论您选择何种数据存储方式,都需要80%的时间用于清理而20%的时间用于分析。


关于数据质量的主要区别在于,数据清理是在将数据加载到数据湖之后进行的,而数据质量过程则是在将数据加载到数据湖中之前实施的;在这两种情况下,这将使花费在改进数据质量上的时间相似。


已经创建了平台来解决这个常见的数据质量问题,该问题在整个数据团队中消耗大量的工程时间。


数据质量对于两种类型的数据存储系统都非常重要:

1、数据湖中的数据质量:这可以通过应用有关GDPR或其他数据相关法律的质量规则来防止“脏”数据值馈入AI模型或强制执行数据提供者的数据传递SLA来实现。

2、数据湖中的数据质量:为了使DWH的集成速度更快,至关重要的是能够在几分钟内增加质量层次,加快集成过程和数据质量洞察力。


许多组织正在采用混合存储系统解决方案,这使得在所有存储系统中拥有一致的数据质量视图比以往任何时候都更加重要。因此,实施可在混合方案中使用的数据质量工具对于优化数据系统,授权数据团队和业务部门以及希望将80/20规则反转为80%的分析和20%(或更少)的清理至关重要。


了解更多数据湖或数据治理相关知识:https://www.esenruizhi.com/ 

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 医疗保健数据治理:预测是什么?

    医疗保健数据治理:预测是什么?

    医疗保健数据治理已经远超过应用程序只是满足合规性标准。医疗费用始终是讨论的主题,健康保险状况和“平价医疗法案”(ACA)等政策也是如此。……查看详情

    发布时间:2018.12.03来源:迈克尔帕斯托雷浏览量:177次

  • 管理数据与拥有数据一样重要:关注数据治理和数据质量

    管理数据与拥有数据一样重要:关注数据治理和数据质量

    在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟……查看详情

    发布时间:2019.09.20来源:知乎浏览量:179次

  • 应用系统的数据治理一些关注点

    应用系统的数据治理一些关注点

    现在互联网公司业务发展都是非常飞速,当业务发展到一定规模,就得考虑如何去做服务治理,大家的重心一般放在微服务的应用架构设计层面,往往比……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:226次

  • 数据治理运作:差距

    数据治理运作:差距

    十年前,顾问必须提高认识并教育客户治理;突出监管风险,合规要求,处罚等。这更像是出售保险产品。今天,全球组织都了解数据治理(DG)是什么……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:145次

  • 数据治理第5部分:数据治理规范

    数据治理第5部分:数据治理规范

    数据治理第5部分:数据治理规范,本部分为GB/T34960的第5部分。本部分按照GB/T 1.1-2009给出的规则起草。本部分由国家信……查看详情

    发布时间:2019.09.02来源:GB/T34960的第5部分浏览量:404次

  • DAMA 数据管理知识体系指南-数据管理方方面面的一部代表性著作

    DAMA 数据管理知识体系指南-数据管理方方面面的一部代表性著作

    本书由DAMA International组织众多数据管理领域的国际级资深专家编著。这是一项里程碑式的工作。数据管理是把业务和信息技术融……查看详情

    发布时间:2018.11.29来源:DAMA浏览量:254次

  • 数据质量包含的要素有哪几点

    数据质量包含的要素有哪几点

    数据是企业最有价值的资产之一,越来越多的企业认识到了数据的重要性。企业的数据质量与企业经营业绩之间有着直接的关系。高质量的数据可以保持公……查看详情

    发布时间:2022.02.17来源:小亿浏览量:659次

  • 数据质量监控

    数据质量监控

    数据质量监控可以分为数据质量的事前预防控制、事中过程控制和事后监督控制:……查看详情

    发布时间:2019.12.06来源:知乎浏览量:227次

  • 做好数据治理,助力政府治理体系和治理能力现代化

    做好数据治理,助力政府治理体系和治理能力现代化

    当前,数据及其技术的融合应用在政府经济调节、市场监管、社会管理、公共服务、生态环境保护等各项工作中强劲助攻、潜力无限。但由于数据是新型生……查看详情

    发布时间:2020.06.22来源:知乎浏览量:129次

  • 数字化转型的缺失部分:公民开发者

    数字化转型的缺失部分:公民开发者

    随着第四次工业革命席卷全球,新技术渗透到从高层城市到小村庄的各个方面。消费者的需求和期望随着技术的发展而增加,迫使企业以更快的速度提供优……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:188次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议