数据湖与数据仓库之间的桥梁

发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:162次标签:数据治理

自Pentaho首席技术官James Dixon提出“数据湖”一词以来已经有十年了。这个术语及其底层技术比以往任何时候都热门。

数据湖.jpg

尽管数据仓库(DWH)系统已经存在并得到认可,但数据行业已经接受了更新的存储库,即数据湖,特别是在大数据增长,向云存储的转变以及实施数据仓库之后。 


可以争论的是,数据湖的优势包括:

1、更快的访问:用户可以轻松访问数据湖,从而实现实时分析。

2、适应性:数据湖可以存储小规模或巨大的数据量(甚至PB)。

3、灵活性:数据湖能够处理各种数据类型和数据源。

4、成本效益:与本地数据湖相比,云数据湖更加经济实惠。


数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相关的高昂成本,而DWH在设计和构建复杂数据存储方面可能会非常耗时。


尽管如此,数据湖解决方案通过提供具有成本效益的云存储选项并使界面和功能更易于识别和简化而在竞争中获得了改观。此外,对DWH的需求仍然很高,其好处包括:

1、效率: 数据湖数据是结构化的,可以在几毫秒内检索到。

2、趋势分析:由于数据湖专为查询和分析而设计,因此它包含历史数据,使用户可以随时间回答一系列预定义的问题。

3、治理:由于许多数据湖系统遵循基于内部数据标准和策略的方法(例如Kimball或Inmon),因此可以帮助数据用户就规则,标准和解释达成一致。


面对大数据问题,数据湖的新范例确实可以完美满足AI的需求,但是结构化数据可以更好地为许多分析或业务用户提供服务。因此,结合了结构化和半结构化数据系统的混合解决方案越来越受欢迎。


如今,数据湖和数据湖已成为数据行业公认的存储库。根据业务用途,数据湖和数据湖可以用于不同的目的并提供各种优势。


但是,两个存储系统仍然存在一个共同的未解决问题: 资料品质。著名的80/20数据科学难题,无论您选择何种数据存储方式,都需要80%的时间用于清理而20%的时间用于分析。


关于数据质量的主要区别在于,数据清理是在将数据加载到数据湖之后进行的,而数据质量过程则是在将数据加载到数据湖中之前实施的;在这两种情况下,这将使花费在改进数据质量上的时间相似。


已经创建了平台来解决这个常见的数据质量问题,该问题在整个数据团队中消耗大量的工程时间。


数据质量对于两种类型的数据存储系统都非常重要:

1、数据湖中的数据质量:这可以通过应用有关GDPR或其他数据相关法律的质量规则来防止“脏”数据值馈入AI模型或强制执行数据提供者的数据传递SLA来实现。

2、数据湖中的数据质量:为了使DWH的集成速度更快,至关重要的是能够在几分钟内增加质量层次,加快集成过程和数据质量洞察力。


许多组织正在采用混合存储系统解决方案,这使得在所有存储系统中拥有一致的数据质量视图比以往任何时候都更加重要。因此,实施可在混合方案中使用的数据质量工具对于优化数据系统,授权数据团队和业务部门以及希望将80/20规则反转为80%的分析和20%(或更少)的清理至关重要。


了解更多数据湖或数据治理相关知识:https://www.esenruizhi.com/ 

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 智与理的结合:当数据治理遇上人工智能

    智与理的结合:当数据治理遇上人工智能

    近日,中国移动研究院发布文章,解说了数据治理和人工智能两者之间各自发展历程,论证了两者在结构功能上的相互作用,阐明了两者共同发展的前……查看详情

    发布时间:2018.09.18来源:中国大数据产业观察网浏览量:411次

  • 基于大数据的质量管理系统怎么选?

    基于大数据的质量管理系统怎么选?

    对于一个制造企业来说,生产是企业最大的动力,而生产质量也需要进行优化管理,一个好的质量管理会带给企业巨大的发展空间和利润价值。正因如此,……查看详情

    发布时间:2019.11.07来源:知乎浏览量:141次

  • 走向人工智能治理的趋势

    走向人工智能治理的趋势

    这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:127次

  • 大数据和BI商业智能有何区别?有何相关?

    大数据和BI商业智能有何区别?有何相关?

    BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案,用来将企业中现有的数据进行有效的整合,快速……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:122次

  • 数据资产管理“管”什么

    数据资产管理“管”什么

    目前,数据资产管理已经形成了一套科学的管理架构体系,其体系架构如下图所示,主要包含9个活动职能和2个保障措施,9个活动职能指的是数据标准……查看详情

    发布时间:2020.09.11来源:知乎浏览量:126次

  • 主数据管理第一步——识别主数据

    主数据管理第一步——识别主数据

    主数据管理的目的就是为了确保企业核心数据的准确性、一致性、稳定性,打破数据孤岛,帮助企业高效运转。然而在茫茫数据大海中识别出主数据是一项……查看详情

    发布时间:2019.10.24来源:亿信华辰浏览量:170次

  • 数据治理中元数据的作用

    数据治理中元数据的作用

    数据治理中元数据的作用主要体现在以下几方面:便捷的业务导航,提高数据质量,工作更高效,降低培训成本,消除知识不对称,高效精准沟通,降低数……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:142次

  • “数据治理那点事”系列之一:那些年我们一起踩过的坑

    “数据治理那点事”系列之一:那些年我们一起踩过的坑

    大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大……查看详情

    发布时间:2019.08.02来源:知乎浏览量:125次

  • 数据囤积日益增长的威胁

    数据囤积日益增长的威胁

    在数据丰富的环境中生活和工作的缺点之一是希望将所有最后的位和字节松开以备将来使用。得益于Amazon S3和Hadoop等廉价存储系统,……查看详情

    发布时间:2019.02.28来源:亿信华辰浏览量:148次

  • 什么是数据质量?如何衡量它以获得最佳结果?

    什么是数据质量?如何衡量它以获得最佳结果?

    我们过去谈过很多关于数据质量的问题 - 包括糟糕数据的成本。但是,尽管对数据质量有了基本的了解,但许多人仍然不太了解“质量”究竟是什么意……查看详情

    发布时间:2018.12.25来源:数据治理浏览量:190次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议