数据湖与数据仓库之间的桥梁

发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:155次标签:数据治理

自Pentaho首席技术官James Dixon提出“数据湖”一词以来已经有十年了。这个术语及其底层技术比以往任何时候都热门。

数据湖.jpg

尽管数据仓库(DWH)系统已经存在并得到认可,但数据行业已经接受了更新的存储库,即数据湖,特别是在大数据增长,向云存储的转变以及实施数据仓库之后。 


可以争论的是,数据湖的优势包括:

1、更快的访问:用户可以轻松访问数据湖,从而实现实时分析。

2、适应性:数据湖可以存储小规模或巨大的数据量(甚至PB)。

3、灵活性:数据湖能够处理各种数据类型和数据源。

4、成本效益:与本地数据湖相比,云数据湖更加经济实惠。


数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相关的高昂成本,而DWH在设计和构建复杂数据存储方面可能会非常耗时。


尽管如此,数据湖解决方案通过提供具有成本效益的云存储选项并使界面和功能更易于识别和简化而在竞争中获得了改观。此外,对DWH的需求仍然很高,其好处包括:

1、效率: 数据湖数据是结构化的,可以在几毫秒内检索到。

2、趋势分析:由于数据湖专为查询和分析而设计,因此它包含历史数据,使用户可以随时间回答一系列预定义的问题。

3、治理:由于许多数据湖系统遵循基于内部数据标准和策略的方法(例如Kimball或Inmon),因此可以帮助数据用户就规则,标准和解释达成一致。


面对大数据问题,数据湖的新范例确实可以完美满足AI的需求,但是结构化数据可以更好地为许多分析或业务用户提供服务。因此,结合了结构化和半结构化数据系统的混合解决方案越来越受欢迎。


如今,数据湖和数据湖已成为数据行业公认的存储库。根据业务用途,数据湖和数据湖可以用于不同的目的并提供各种优势。


但是,两个存储系统仍然存在一个共同的未解决问题: 资料品质。著名的80/20数据科学难题,无论您选择何种数据存储方式,都需要80%的时间用于清理而20%的时间用于分析。


关于数据质量的主要区别在于,数据清理是在将数据加载到数据湖之后进行的,而数据质量过程则是在将数据加载到数据湖中之前实施的;在这两种情况下,这将使花费在改进数据质量上的时间相似。


已经创建了平台来解决这个常见的数据质量问题,该问题在整个数据团队中消耗大量的工程时间。


数据质量对于两种类型的数据存储系统都非常重要:

1、数据湖中的数据质量:这可以通过应用有关GDPR或其他数据相关法律的质量规则来防止“脏”数据值馈入AI模型或强制执行数据提供者的数据传递SLA来实现。

2、数据湖中的数据质量:为了使DWH的集成速度更快,至关重要的是能够在几分钟内增加质量层次,加快集成过程和数据质量洞察力。


许多组织正在采用混合存储系统解决方案,这使得在所有存储系统中拥有一致的数据质量视图比以往任何时候都更加重要。因此,实施可在混合方案中使用的数据质量工具对于优化数据系统,授权数据团队和业务部门以及希望将80/20规则反转为80%的分析和20%(或更少)的清理至关重要。


了解更多数据湖或数据治理相关知识:https://www.esenruizhi.com/ 

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的目标和原则

    数据治理的目标和原则

    所有成功的数据治理和管理计划,流程和项目都充实了这些原则。它们是帮助利益相关者聚集在一起解决 每个组织固有的数据相关冲突类型的原则 ……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:218次

  • 数据质量衡量标准有几个属性

    数据质量衡量标准有几个属性

    数据分析和数据挖掘都离不开数据的质量,做过数据产品的人都知道,质量高的数据对于产品的意义有多大,如果说数据是不具备完整性、规范性以及一致……查看详情

    发布时间:2022.03.28来源:小亿浏览量:422次

  • 如何降低BI系统建设风险?数据治理告诉你答案

    如何降低BI系统建设风险?数据治理告诉你答案

    如何降低BI系统建设风险?如何更好地管理和控制数据,做好数据体系建设,而非打造一个又一个割裂孤立的系统?这其中数据分析与数据治理双翼并行……查看详情

    发布时间:2021.03.23来源:亿信数据治理研究院浏览量:694次

  • 数据治理面临的挑战

    数据治理面临的挑战

    本部分的内容将数据治理面临的挑战分为两类,一类因“技术”而起,一类因“人”而起。由客观的技术问题对数据治理带来的挑战普遍较好解决,比如如……查看详情

    发布时间:2019.11.01来源:知乎浏览量:183次

  • 数据科学的下一个「超能力」:模型可解释性

    数据科学的下一个「超能力」:模型可解释性

    很多人重视重视模型的预测能力,却忽略了模型可解释性的重要性,只知其然而不知其所以然。为什么说模型的可解释性这么重要呢?作者就 5 个方面……查看详情

    发布时间:2019.03.28来源:亿信华辰浏览量:135次

  • 做好数据治理,助力政府治理体系和治理能力现代化

    做好数据治理,助力政府治理体系和治理能力现代化

    当前,数据及其技术的融合应用在政府经济调节、市场监管、社会管理、公共服务、生态环境保护等各项工作中强劲助攻、潜力无限。但由于数据是新型生……查看详情

    发布时间:2020.06.22来源:知乎浏览量:126次

  • 数据资产管理领域重要的三个方向

    数据资产管理领域重要的三个方向

    数据资产管理领域重要的三个方向包括:资产分析、资产治理、资产应用,并需要基于这三个方向的技术研究和实战,将流程、经验、标准和规范等产品化……查看详情

    发布时间:2020.11.06来源:知乎浏览量:107次

  • 数据治理成功的秘诀

    数据治理成功的秘诀

    数据治理(DG)1.0一直在努力实现,但现在DG需要符合通用数据保护法规(GDPR),因此企业需要一种新方法来实现数据治理的成功。……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:202次

  • 元数据到元数据治理,这一篇文章就够了

    元数据到元数据治理,这一篇文章就够了

    “元数据管理是企业数据治理的基础”,在数据治理战略实施的时候,这是我们经常会听到看到的一句话。但是,数据治理的概念在国内还并未普及,如何……查看详情

    发布时间:2020.08.14来源:亿信华辰浏览量:139次

  • 大数据会取代传统BI吗

    大数据会取代传统BI吗

    BI一词早在20年前就被提出,加特纳集团将商业智能定义为描述一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:126次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议