数据质量监控

发布时间:2019.12.06来源:知乎浏览量:48次标签:数据治理

数据质量监控可以分为数据质量的事前预防控制、事中过程控制和事后监督控制:


事前预防控制
建立数据标准化模型,对每个数据元素的业务描述、数据结构、业务规则、质量规则、管理规则、采集规则进行清晰的定义,以上的数据质量的校验规则、采集规则本身也是一种数据,在元数据中定义。面对庞大的数据种类和结构,如果没有元数据来描述这些数据,使用者无法准确地获取所需信息。正是通过元数据,使得数据才可以被理解、使用,才会产生价值。构建数据分类和编码体系,形成企业数据资源目录,让用户能够轻松地查找和定位到相关的数据。实践告诉我们做好元数据管理,是预防数据质量问题的基础。

数据质量问题的预防控制最有效的方法就是找出发生数据质量问题的根本原因并采取相关的策略进行解决。
1)确定根本原因:确定引起数据质量问题的相关因素,并区分它们的优先次序,以及为解决这些问题形成具体的建议。

2)制定和实施改进方案:最终确定关于行动的具体建议和措施,基于这些建议制定并且执行提高方案,预防未来数据质量问题的发生。


事中过程控制
事中数据质量的控制,即在数据的维护和使用过程中去监控和处理数据质量。通过建立数据质量的流程化控制体系,对数据的新建、变更、采集、加工、装载、应用等各个环节进行流程化控制。数据质量的过程控制,要做好两个强化:
(1)强化数据的标准化生产,从数据的源头控制好数据质量,该过程可以采用系统自动化校验和人工干预审核相结合的方式进行管理,数据的新增和变更一方面通过系统进行数据校验,对于不符合质量规则的数据不允许保持,另一方面采集流程驱动的数据管理模式,数据的新增和变更操作都需要人工进行审核,只有审核通过才能生效。
(2)强化数据质量预警机制,对于数据质量边界模糊的数据采用数据质量预警机制。数据预警机制是对数据相似性和数据关联性指标的重要控制方法。针对待管理的数据元素,配置数据相似性算法或数据关联性算法,在数据新增、变更、处理、应用等环节调用预置的数据质量算法,进行相识度或关联性分析,并给出数据分析的结果。数据预警机制常用在业务活动的交易风险控制等场景。

事后监督控制
是不是我们最好了事前预防控制和事中过程控制,就不会再有数据质量问题的发生了?答案显然是否定的。而事实上,不论我们做了多少预防措施、多严格的过程控制,总是还有数据质量问题的“漏网之鱼”,你会发现只要是人为干预的过程,总会存在数据质量的问题。数据质量问题一旦产生就已经是“木已成舟”,为了避免或减低其对业务的影响,我们需要及时的发现它。这里,数据质量的事后监督控制就尤为重要了。

定期开展数据质量的检查和清洗工作应作为企业数据质量治理的常态工作来抓。
1)设置数据质量规则。基于数据的元模型配置数据质量规则,即针对不同的数据对象,配置相应的数据质量指标,不限于:数据唯一性、数据准确性、数据完整性、数据一致性、数据关联性、数据及时性等。
2)设置数据检查任务。设置成手动执行或定期自动执行的系统任务,通过执行检查任务对存量数据进行检查,形成数据质量问题清单。
3)出具数据质量问题报告。根据数据质量问题清单汇总形成数据质量报告,数据质量报告支持查询、下载等操作。
4)制定和实施数据质量改进方案,进行数据质量问题的处理。
5)评估与考核。通过定期对系统开展全面的数据质量状况评估,从问题率、解决率、解决时效等方面建立评价指标进行整改评估,根据整改优化结果,进行适当的绩效考核。

数据治理的“常态化”才是数据质量问题的最好解决方式,而要实现常态化治理就需要改变原来的企业组织形式、管理流程、转变观念,以适应这种变化。数据治理的“常态化”要经得起折腾,所以千万不能老做些重新发明轮子的亊情!

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理流程

    数据治理流程

    数据治理流程必须通过TSDS数据治理流程审查TEA收集的所有数据。此过程允许用户监督 TEA如何从LEA收集立法规定的数据以及为stud……查看详情

    发布时间:2018.11.27来源:数据治理浏览量:87次

  • 数据湖架构 - 最佳实践指南

    数据湖架构 - 最佳实践指南

    实施正确的数据湖架构对于将数据转化为价值至关重要。无论您的数据湖中有多少数据,如果您缺乏有效管理数据、跟踪数据并确保其安全的架构特性,那……查看详情

    发布时间:2021.06.18来源:亿信数据治理知识库浏览量:45次

  • 数据治理“起航” 推动银行业高质量发展

    数据治理“起航” 推动银行业高质量发展

    银行业金融机构数据治理提上日程。近日,银监会发布《银行业金融机构数据治理指引(征求意见稿)》(以下简称《指引》),要求银行业金融机构将数……查看详情

    发布时间:2019.02.21来源:和讯网浏览量:42次

  • 什么是数据治理?政务数据治理与数据治理有什么不同?

    什么是数据治理?政务数据治理与数据治理有什么不同?

    政务数据治理,其实是应用了广义数据治理的其中一部分内容,其因管理和历史因素,在战略规划、组织架构、制度、流程和评估层面在很多时候无法达到……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:79次

  • 数据治理:你如何叠加?

    数据治理:你如何叠加?

    企业和组织生成的数据比他们知道的更多。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:58次

  • 什么是主数据?

    什么是主数据?

    企业主数据(Master Data)是用来描述企业核心业务实体的数据,比如客户、合作伙伴、员工、产品、物料单、账户等;它是具有高业务价值……查看详情

    发布时间:2020.04.29来源:知乎浏览量:39次

  • 指数技术时代的数据治理

    指数技术时代的数据治理

    新兴的数据需求和数据生成技术需要两种类型的数据治理:安全性,以及整体企业级治理的需求,而不是逐个孤岛的治理。企业中出现了一个重要的新价值……查看详情

    发布时间:2019.01.02来源:亿信华辰浏览量:69次

  • 数据治理的重点领域:关注数据质量

    数据治理的重点领域:关注数据质量

    由于数据质量,完整性或可用性方面的问题,这种类型的程序通常会出现。……查看详情

    发布时间:2019.03.29来源:亿信华辰浏览量:48次

  • 如何开展企业ERP(SAP)数据治理工作?

    如何开展企业ERP(SAP)数据治理工作?

    在企业ERP数据治理这个范畴上,我们应该首先解决的是企业对其数据的了解和认知。由于IT系统数据模型反映了应用关系型数据库在数据存储及数据……查看详情

    发布时间:2019.01.07来源:飞鱼浏览量:40次

  • 数据治理(DG)

    数据治理(DG)

    数据治理(DG)是对企业中使用的数据的可用性,可用性,完整性和安全性的整体管理。健全的数据治理计划包括理事机构或理事会,一套明确的程序和……查看详情

    发布时间:2018.11.12来源:techtarget浏览量:60次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议