数据质量监控

发布时间:2019.12.06来源:知乎浏览量:190次标签:数据治理

数据质量监控可以分为数据质量的事前预防控制、事中过程控制和事后监督控制:


事前预防控制
建立数据标准化模型,对每个数据元素的业务描述、数据结构、业务规则、质量规则、管理规则、采集规则进行清晰的定义,以上的数据质量的校验规则、采集规则本身也是一种数据,在元数据中定义。面对庞大的数据种类和结构,如果没有元数据来描述这些数据,使用者无法准确地获取所需信息。正是通过元数据,使得数据才可以被理解、使用,才会产生价值。构建数据分类和编码体系,形成企业数据资源目录,让用户能够轻松地查找和定位到相关的数据。实践告诉我们做好元数据管理,是预防数据质量问题的基础。

数据质量问题的预防控制最有效的方法就是找出发生数据质量问题的根本原因并采取相关的策略进行解决。
1)确定根本原因:确定引起数据质量问题的相关因素,并区分它们的优先次序,以及为解决这些问题形成具体的建议。

2)制定和实施改进方案:最终确定关于行动的具体建议和措施,基于这些建议制定并且执行提高方案,预防未来数据质量问题的发生。


事中过程控制
事中数据质量的控制,即在数据的维护和使用过程中去监控和处理数据质量。通过建立数据质量的流程化控制体系,对数据的新建、变更、采集、加工、装载、应用等各个环节进行流程化控制。数据质量的过程控制,要做好两个强化:
(1)强化数据的标准化生产,从数据的源头控制好数据质量,该过程可以采用系统自动化校验和人工干预审核相结合的方式进行管理,数据的新增和变更一方面通过系统进行数据校验,对于不符合质量规则的数据不允许保持,另一方面采集流程驱动的数据管理模式,数据的新增和变更操作都需要人工进行审核,只有审核通过才能生效。
(2)强化数据质量预警机制,对于数据质量边界模糊的数据采用数据质量预警机制。数据预警机制是对数据相似性和数据关联性指标的重要控制方法。针对待管理的数据元素,配置数据相似性算法或数据关联性算法,在数据新增、变更、处理、应用等环节调用预置的数据质量算法,进行相识度或关联性分析,并给出数据分析的结果。数据预警机制常用在业务活动的交易风险控制等场景。

事后监督控制
是不是我们最好了事前预防控制和事中过程控制,就不会再有数据质量问题的发生了?答案显然是否定的。而事实上,不论我们做了多少预防措施、多严格的过程控制,总是还有数据质量问题的“漏网之鱼”,你会发现只要是人为干预的过程,总会存在数据质量的问题。数据质量问题一旦产生就已经是“木已成舟”,为了避免或减低其对业务的影响,我们需要及时的发现它。这里,数据质量的事后监督控制就尤为重要了。

定期开展数据质量的检查和清洗工作应作为企业数据质量治理的常态工作来抓。
1)设置数据质量规则。基于数据的元模型配置数据质量规则,即针对不同的数据对象,配置相应的数据质量指标,不限于:数据唯一性、数据准确性、数据完整性、数据一致性、数据关联性、数据及时性等。
2)设置数据检查任务。设置成手动执行或定期自动执行的系统任务,通过执行检查任务对存量数据进行检查,形成数据质量问题清单。
3)出具数据质量问题报告。根据数据质量问题清单汇总形成数据质量报告,数据质量报告支持查询、下载等操作。
4)制定和实施数据质量改进方案,进行数据质量问题的处理。
5)评估与考核。通过定期对系统开展全面的数据质量状况评估,从问题率、解决率、解决时效等方面建立评价指标进行整改评估,根据整改优化结果,进行适当的绩效考核。

数据治理的“常态化”才是数据质量问题的最好解决方式,而要实现常态化治理就需要改变原来的企业组织形式、管理流程、转变观念,以适应这种变化。数据治理的“常态化”要经得起折腾,所以千万不能老做些重新发明轮子的亊情!

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据标准与主数据、元数据、数据质量的关系

    数据标准与主数据、元数据、数据质量的关系

    数据标准与主数据、元数据、数据质量的关系,数据治理项目的根本诉求在于提升数据质量。……查看详情

    发布时间:2020.09.24来源:知乎浏览量:296次

  • 数据湖与数据仓库之间的桥梁

    数据湖与数据仓库之间的桥梁

    数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相……查看详情

    发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:138次

  • 数据质量对于数据分析来说至关重要

    数据质量对于数据分析来说至关重要

    数据质量的关键所在包括:大致分为完整性,一致性,准确性,有效性和及时性这五个组件。……查看详情

    发布时间:2019.11.13来源:知乎浏览量:136次

  • 数据治理 VS 数据管理!

    数据治理 VS 数据管理!

    与早期的数字化原生企业相比,不进行数据管理或治理的企业将面临着严重的后果 。至于说到良好的数据管理和应用的实践,大多数人只会将这个词与那……查看详情

    发布时间:2022.06.15来源:互联网浏览量:203次

  • 大数据是大问题?组织需要为数据管理负责

    大数据是大问题?组织需要为数据管理负责

    如果数据收集在2018年让人们明白一件事的话,那就是使用数据的公司与商业模式依赖数据利用的公司之间存在一条明显而深刻的界线。由于剑桥分析……查看详情

    发布时间:2019.04.09来源:亿信华辰浏览量:113次

  • 数据管理如何支持数据隐私合规性

    数据管理如何支持数据隐私合规性

    已经具备数据治理能力的组织有一个坚实的开端,可以利用它促进数据隐私合规性的许多方面。 ……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:122次

  • 面对如今的数据挑战企业如何有效地进行数据治理

    面对如今的数据挑战企业如何有效地进行数据治理

    数据治理是对数据资产管理行使权力和控制的活动集合,数据治理是识别、管理和解决几种不同类型数据相关问题的手段,包括数据质量问题、数据命名和……查看详情

    发布时间:2019.08.29来源:知乎浏览量:140次

  • 企业如何快速启动数据治理项目呢?

    企业如何快速启动数据治理项目呢?

    企业在运营的过程中通常都会产生各种各样的数据问题,例如各部门数据不一致,导致汇总部门工作效率低,数据错误从而导致做出错误的判断等等,因此……查看详情

    发布时间:2019.07.29来源:头条浏览量:132次

  • 打开大数据的正确方式——做减法

    打开大数据的正确方式——做减法

    随着数字技术的广泛应用,原本的新奇感已经荡然无存。创新领域内积年累月的争夺不断攫取着人们的时间和注意力,反而令用户感到信息过载、不堪重负……查看详情

    发布时间:2019.04.09来源:亿信华辰浏览量:120次

  • 8 项提高数据完整性的预防性措施

    8 项提高数据完整性的预防性措施

    仅使用一种方法几乎不可能将数据完整性风险降至最低,因此使用多种策略的组合是更好的选择。降低数据完整性风险的一些最有效方法包括8点。……查看详情

    发布时间:2021.07.07来源:亿信华辰数据治理知识库浏览量:644次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议