电力数据治理方案如何实施?要注意什么?

发布时间:2021.04.09来源:亿信数据治理研究院浏览量:613次标签:数据治理

电力行业信息化起步早,对数据的重视程度也相对较高,但是由时间跨度长、大多应业务需求而建,缺乏统一的规划,导致层级较多,工具较杂。在整个产业进入智慧转型的过程中,“数据的融合、驱动”成为高亮的部分。


但是要真正落地需求面临的难点之一:数据量大。不仅历史数据多,作为一个高信息化的产业,实时产生的数据也是海量的。难点二,系统多是一方面,很多系统由于时间过长,基本上处于近乎废弃的状况,只是鉴于其中某一个或者几个应用勉强维持。甚至有些系统的提供商已经不存在了。


由此,产生了电力行业数据治理痛点,包括整体架构缺乏统一的数据中心,孤岛现象严重;数据治理方面缺乏统一的数据标准和数据质量关系;数据应用方面,最潜在的价值挖掘不够。


数据的融合共享将会促进数据价值的产生,数据治理正是这种价值产生的核心驱动力。首先可以帮助企业实现降本增效,这其中分为三个点,管理提升、经营实效、发展体制。那么电力数据治理方案具体如何实施呢?


全过程闭环的数据质量管理:实现数据质量的全过程控制,从数据质量的录入、采集、审核发布等环节提升数据质量,提供流程监控、质量监控、质量考核、血缘追溯等功能。


数据输入校验:以业务管理为指导,制定数据强校验、弱校验规则,提示发电量价异常、成本收益对标异常、经济技术指标波动异常等,为数据质量检核提供依据。


审核发布管理:支持报送、审核、发布的强管理流程,落实数据责任主体(归集到生产运营、燃料供应与化验、市场营销、预算与核算……)。


数据流程监控:监控流程执行进度、延误、状况等,评估流程运行质量及完善方案。


数据质量监控:采用数据表单和计算模型建立数据流主要环节的数据质量监控模型,支持质量过程评价、支持督办与核办。


数据血缘追溯:错误数据层层追踪,解决共享数据的可信度、质量、版本信息等问题,获得数据在数据流中的演化过程。


数据质量考核:根据数据职责,分解数据质量到各专业、各系统,建立数据质量评价体系,收集评价信息,定期形成质量报告(时效性、误差率、共享率……)。


电力数据治理方案实施需要注意:

电力数据治理.jpg

以指标数据为主的治理范围:发电企业信息化程度难以实施全数据治理,指标数据治理需求迫切、见效快、见效明显。


自上而下的数据治理模式:现有的应用系统技术条件要求必须建立集中平台,现有信息管理能力决定必须实行集中化强管控。


数据治理与业务管理相结合:数据治理不仅仅是标准规划问题,数据治理和业务管理相结合,才能真正推动数据治理落到实处。业务管理可以真正协助数据全过程可管可控;数据治理与业务治理的结合,才能实现管理需求的快速响应。


数据治理与数据增值相结合:数据是核心信息资产,数据治理是形成数据资产的有效手段,数据资产只有通过数据增值发挥其价值。通过数据治理、数据增值双促进,才能确保数据治理成果的保值增值。


了解更多电力数据治理解决方案相关内容:https://www.esenruizhi.com/solutions/DataGovernment.html


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 做好大数据治理才能建设好大数据平台

    做好大数据治理才能建设好大数据平台

    数据量不断的增加,对数据分析和管理带来了挑战,分析数据背后的价值也为企业发展,社会进步带来了机遇。因此各行各业开始建设大数据平台,大数据……查看详情

    发布时间:2019.08.15来源:知乎浏览量:144次

  • 五大数据治​​理用例和驱动因素

    五大数据治​​理用例和驱动因素

    随着数据应用程序的增长,数据治理用例也在增长。而传统的,仅限IT的数据治理方法Data Governance 1.0已经为协作的企业级数……查看详情

    发布时间:2019.01.25来源:亿信华辰浏览量:193次

  • 数据治理成功的六个步骤

    数据治理成功的六个步骤

    毫无疑问,数据已经成为信息经济的原材料,而数据治理是一项战略迫切需要。 ……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:123次

  • 了解变更治理与数据管理实践

    了解变更治理与数据管理实践

    组织实施变革,为内部利益相关者或股东创造价值和利益。通常,价值创造只不过是在优化风险的同时享受理想资源成本带来的好处。……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:159次

  • 银行数据治理包括哪几个方面

    银行数据治理包括哪几个方面

    从《银行业金融机构数据治理指引》相应章节可看出, 数据治理/管理的核心是基础数据、衍生数据,以及产生与 应用这些数据的组织架构、运行机制……查看详情

    发布时间:2021.04.06来源:数据治理研究院浏览量:156次

  • 2018年中国大数据交易产业十大事件

    2018年中国大数据交易产业十大事件

    凡是过去,皆为序章。中国大数据交易产业2018年大事频出,国家大数据(贵州)综合试验区“大数据资源流通”取得新进展,2018第四届中国(……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:126次

  • 数据标准在数据资产管理中的意义

    数据标准在数据资产管理中的意义

    随着大数据的持续升温,数据资产管理近年来成为政府和企业领导层特别关注的领域。在谈数据的价值之前,必须先说清楚所谈论的数据资产都有那些,都……查看详情

    发布时间:2019.12.19来源:知乎浏览量:151次

  • 为什么数据治理?

    为什么数据治理?

    数据治理曾经是一件好事,但由于数据和分析的重点和重要性日益增加,它已成为帮助推动整个企业数据管理的必要条件。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:138次

  • 浅谈数据质量对企业管理的影响

    浅谈数据质量对企业管理的影响

    工欲善其事,必先利其器。亿信数据质量管理平台(EsDataClean)提供从标准定义、质量监控、绩效评估、质量分析、质量报告、重大问题及……查看详情

    发布时间:2020.10.21来源:知乎浏览量:138次

  • 业务流程建模与标准操作过程之间的联系

    业务流程建模与标准操作过程之间的联系

    我们上周开始了一个关于业务流程(BP)建模及其在企业中的角色的新博客系列。本周的重点是业务流程建模和标准操作过程之间的联系。具体而言,使……查看详情

    发布时间:2019.02.18来源:亿信华辰浏览量:126次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议