电力数据治理方案如何实施?要注意什么?

发布时间:2021.04.09来源:亿信数据治理研究院浏览量:7次标签:数据治理

电力行业信息化起步早,对数据的重视程度也相对较高,但是由时间跨度长、大多应业务需求而建,缺乏统一的规划,导致层级较多,工具较杂。在整个产业进入智慧转型的过程中,“数据的融合、驱动”成为高亮的部分。


但是要真正落地需求面临的难点之一:数据量大。不仅历史数据多,作为一个高信息化的产业,实时产生的数据也是海量的。难点二,系统多是一方面,很多系统由于时间过长,基本上处于近乎废弃的状况,只是鉴于其中某一个或者几个应用勉强维持。甚至有些系统的提供商已经不存在了。


由此,产生了电力行业数据治理痛点,包括整体架构缺乏统一的数据中心,孤岛现象严重;数据治理方面缺乏统一的数据标准和数据质量关系;数据应用方面,最潜在的价值挖掘不够。


数据的融合共享将会促进数据价值的产生,数据治理正是这种价值产生的核心驱动力。首先可以帮助企业实现降本增效,这其中分为三个点,管理提升、经营实效、发展体制。那么电力数据治理方案具体如何实施呢?


全过程闭环的数据质量管理:实现数据质量的全过程控制,从数据质量的录入、采集、审核发布等环节提升数据质量,提供流程监控、质量监控、质量考核、血缘追溯等功能。


数据输入校验:以业务管理为指导,制定数据强校验、弱校验规则,提示发电量价异常、成本收益对标异常、经济技术指标波动异常等,为数据质量检核提供依据。


审核发布管理:支持报送、审核、发布的强管理流程,落实数据责任主体(归集到生产运营、燃料供应与化验、市场营销、预算与核算……)。


数据流程监控:监控流程执行进度、延误、状况等,评估流程运行质量及完善方案。


数据质量监控:采用数据表单和计算模型建立数据流主要环节的数据质量监控模型,支持质量过程评价、支持督办与核办。


数据血缘追溯:错误数据层层追踪,解决共享数据的可信度、质量、版本信息等问题,获得数据在数据流中的演化过程。


数据质量考核:根据数据职责,分解数据质量到各专业、各系统,建立数据质量评价体系,收集评价信息,定期形成质量报告(时效性、误差率、共享率……)。


电力数据治理方案实施需要注意:

电力数据治理.jpg

以指标数据为主的治理范围:发电企业信息化程度难以实施全数据治理,指标数据治理需求迫切、见效快、见效明显。


自上而下的数据治理模式:现有的应用系统技术条件要求必须建立集中平台,现有信息管理能力决定必须实行集中化强管控。


数据治理与业务管理相结合:数据治理不仅仅是标准规划问题,数据治理和业务管理相结合,才能真正推动数据治理落到实处。业务管理可以真正协助数据全过程可管可控;数据治理与业务治理的结合,才能实现管理需求的快速响应。


数据治理与数据增值相结合:数据是核心信息资产,数据治理是形成数据资产的有效手段,数据资产只有通过数据增值发挥其价值。通过数据治理、数据增值双促进,才能确保数据治理成果的保值增值。


了解更多电力数据治理解决方案相关内容:https://www.esenruizhi.com/solutions/DataGovernment.html


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 避免这五大数据治​​理错误

    避免这五大数据治​​理错误

    如果您正在开始一个大数据项目,那么您可能会遇到一个或多个数据管理挑战。您就如何实施数据治理以及如何控制数据流所做出的决策可能会影响您的项……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:1次

  • 中国地方政府数据治理机构的初步研究:现状与模式

    中国地方政府数据治理机构的初步研究:现状与模式

    立数据治理机构是中国地方政府迎接数字时代的一项重要治理创新。本文对近年来先后成立的地方政府数据治理机构的发展现状进行了详细梳理,对其隶属……查看详情

    发布时间:2019.02.25来源:电子政务网浏览量:1次

  • 数据质量问题的影响因素

    数据质量问题的影响因素

    数据质量反映的是数据的“适用性(fitness for use)”,即数据满足使用需要的合适程度。数据质量通过完整性、一致性、准确性、及……查看详情

    发布时间:2020.04.09来源:百度浏览量:1次

  • “安全”与“共享”同行,大数据正改变着世界

    “安全”与“共享”同行,大数据正改变着世界

    什么是大数据?早在2011年,世界著名咨询公司麦肯锡就曾在《大数据:下一个创新、竞争和生产力的前沿》报告中对其进行了基础定义:“大数据是……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:1次

  • 做好数据治理,助力政府治理体系和治理能力现代化

    做好数据治理,助力政府治理体系和治理能力现代化

    当前,数据及其技术的融合应用在政府经济调节、市场监管、社会管理、公共服务、生态环境保护等各项工作中强劲助攻、潜力无限。但由于数据是新型生……查看详情

    发布时间:2020.06.22来源:知乎浏览量:3次

  • 数据资产管理直面企业痛点

    数据资产管理直面企业痛点

    企业日常经营活动中积累的大量数据,除了支持业务流程运转之外,越来越多地被用于帮助企业提升管理决策效率、实现价值挖掘和业务创新。企业日常经……查看详情

    发布时间:2020.09.11来源:知乎浏览量:4次

  • 重构数据治理的必要性

    重构数据治理的必要性

    拥有管理良好的数据资产并不能确切的保证你的生产业务价值。所以你就需要必备跨不同组件和活动的整体视图。那么这个时候数据治理就显得尤为重要。……查看详情

    发布时间:2018.11.14来源:马克·皮科浏览量:3次

  • 企业数字化转型需重视哪些问题

    企业数字化转型需重视哪些问题

    大数据可以帮助企业制定可行的战略规划,获取客户洞察力,支持客户购买行为,建立新的商业模式,从而赢得竞争优势。成功的企业数字案例显然有自己……查看详情

    发布时间:2019.11.07来源:知乎浏览量:1次

  • 2019年的数据前景如何

    2019年的数据前景如何

    这三个与数据相关的趋势今年值得关注。 公司喜欢技术堆栈所有层的“即服务”模式,从云供应商提供的基础架构到完整的SaaS应用程序。但是……查看详情

    发布时间:2019.01.07来源:数据治理浏览量:1次

  • 银行数据治理工作的落地面临着众多的困难与挑战

    银行数据治理工作的落地面临着众多的困难与挑战

    数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情

    发布时间:2020.07.09来源:小亿浏览量:5次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议