数据治理是否灵活?
发布时间:2019.01.11来源:亿信华辰浏览量:85次标签:数据治理
这个问题的答案是肯定的,数据治理绝对可以是敏捷的。但是,与数据管理解决方案的开发一样,也需要进行一些初始设置。数据治理模型可以是松散的,也可以是高度结构化的。我最初的很多经验都是关于所谓的“草根”数据治理的。有很多方法可以“做”数据治理,就像有组织“做”它一样——这没关系。您决定采用的方法应该与组织的文化、数据管理成熟度级别、数据治理目标和对结构的期望相关联。
启动组织中的数据治理功能所需的一些初始的基础活动包括:
一个发现阶段,用于评估情绪、确定利益相关者、确定机会(和业务价值)和重点领域,并开始制定目标和数据治理路线图。
一个基本的实施阶段,用于围绕数据治理定义组织、沟通和教育利益相关者、确保执行支持并指派数据管理员。
遵循这些初始步骤,可以将数据治理程序设置为一个高度结构化的组织,并使用工具和模板设置一组定义好的流程,也可以将其设置为一个不那么结构化的团队,由个人共同完成目标并通过路线图工作。无论采用哪种方法,敏捷部分都可以发挥作用。例如,当我们使用术语敏捷来构建数据仓库时,我们通常描述发生的迭代开发。这是可以实现的,因为要开发的主题领域可以被识别、划分优先级并分解为发布,并且发布可以分解为更小的工作迭代或冲刺。数据治理程序也可以做到这一点。许多组织将开始努力创建数据字典,或开发标准业务语言,甚至定义每个数据域,并为整个组织分配相应的数据管理员。通过采用这种方法,在短期内它是一个没有任何价值实现的大量前期工作。这些举措中的许多最终都失去了动力。另一种更灵活的方法是根据战略项目或业务需求确定较小的数据治理计划,并从中构建。通过这种方式,组织可以让每个人都了解进展和决策,但是工作努力是有限的,而且集中的。计划的商业价值能够更快地实现,从而增加了人们的兴趣。有些人可能会担心,采用更灵活的数据治理方法可能会导致孤立的决策。这是一种风险,但是如果你在建立基础阶段时考虑到“大局”,那么风险就会降低。
-
银行数据治理工作的落地面临着众多的困难与挑战
数据治理越来越受到银行、监管机构乃至国家层面的重视。银行已经意识到高效的管理体系、统一的数据标准、良好的数据质量才是数据价值实现的基础。……查看详情发布时间:2020.07.09来源:小亿浏览量:97次
-
如何有效的进行数据交换管理
在现代信息社会,政府、企事业单位相继建立了各自的信息管理系统,这些独立的系统创建之初没有统一的规划,彼此之间数据的存储环境和存储形式差异……查看详情发布时间:2020.04.23来源:知乎浏览量:97次
-
数据沿袭工具如何促进数据治理策略
企业可以通过跟踪数据更改的方式和时间来加强数据治理工作。专家David Loshin就如何使用数据沿袭产品提供建议。……查看详情发布时间:2019.03.26来源:亿信华辰浏览量:110次
-
大数据时代不能没有数据治理
第一个提出大数据时代到来的是全球知名咨询公司麦肯锡,现如今大数据存在于各个行业,受到了人们的重视。现在社会科技告诉发展,信息流通快,使得……查看详情发布时间:2019.08.13来源:知乎浏览量:79次
-
大数据技术学习,深度挖掘大数据的现状分析
企业级技术 = 艰苦的工作 其实大数据有趣的是它不是直接可以炒作的东西。 能够获得广泛兴趣的产品和服务往往是那些人们可以触摸……查看详情发布时间:2019.03.20来源:亿信华辰浏览量:101次
-
建设大数据平台,从“治理”数据谈起
大数据时代还需要数据治理吗?数据平台发展过程中随处可见的数据问题大数据不是凭空而来,1981年第一个数据仓库诞生,到现在已经有了近40年……查看详情发布时间:2019.01.11来源:亿信华辰浏览量:83次
-
现在企业为什么越来越关注数据治理了
数据治理在当今的企业中经常被引用,但是许多IT团队在围绕如此宽泛的概念进行思考时遇到了麻烦。数据治理也称为信息治理,是指用于管理整个组织……查看详情发布时间:2020.06.22来源:知乎浏览量:114次
-
关于数据标准认识的几个误区
数据标准这个词,最早是在金融行业,特别是银行业的数据治理中开始使用的。数据标准工作一直是数据治理中的重要基础性内容。但是对于数据标准,不……查看详情发布时间:2020.11.13来源:知乎浏览量:94次
-
如今传统企业如何做数字化转型?
什么是数字化转型?“数字化转型”实际上就是对业务过程进行的重塑,通过重塑使其默认就更加适应更全面的在线环境,从最……查看详情发布时间:2020.07.31来源:知乎浏览量:74次