企业的元数据和元数据管理平台介绍

发布时间:2020.08.31来源:CSDN浏览量:139次标签:数据治理

元数据管理是做什么?元数据在数据平台对原信息的收集、汇总和传递将数据平台各个模块整合起来。元数据管理系统是收集线上db、solor集群、hbase集群和hive集群的元数据信息,并将其传递给各其他系统。元数据管理为大数据平台绘制数据地图、统一数据口径、标明数据方位、分析数据关系、管理模型变更及精确到字段级别的影响分析。打通上下游数据继承关系断层,为数据质量维护和业务逻辑可视化打下坚实基础。


要实现元数据管理有三个方面:
1、采集:指从各种工具中,把各种类型的元数据采集进来,采集是元数据管理第一步。
2、存储:采集之后需要相应的存储策略来对元数据进行存储,这需要在不改变存储架构的情况下扩展元数据存储的类型;
3、分析:在采集和存储完成后,对已经存储的元数据进行管理分析。

元数据的作用
(1) 元数据是进行数据集成所必需的
数据仓库最大的特点就是它的集成性。这一特点不仅体现在它所包含的数据上,还体现在实施数据仓库项目的过程当中。
一方面,从各个数据源中抽取的数据要按照一定的模式存入数据仓库中,这些数据源与数据仓库中数据的对应关系及转换规则都要存储在元数据知识库中;另一方面,在数据仓库项目实施过程中,直接建立数据仓库往往费时、费力,因此在实践当中,人们可能会按照统一的数据模型,首先建设数据集市,然后在各个数据集市的基础上再建设数据仓库。
不过,当数据集市数量增多时很容易形成“蜘蛛网”现象,而元数据管理是解决“蜘蛛网”的关键。如果在建立数据集市的过程中,注意了元数据管理,在集成到数据仓库中时就会比较顺利;相反,如果在建设数据集市的过程中忽视了元数据管理,那么最后的集成过程就会很困难,甚至不可能实现。

(2) 元数据定义的语义层可以帮助最终用户理解数据仓库中的数据
最终用户不可能象数据仓库系统管理员或开发人员那样熟悉数据库技术,因此迫切需要有一个“翻译”,能够使他们清晰地理解数据仓库中数据的含意。元数据可以实现业务模型与数据模型之间的映射,因而可以把数据以用户需要的方式“翻译”出来,从而帮助最终用户理解和使用数据。

(3) 元数据是保证数据质量的关键
数据仓库或数据集市建立好以后,使用者在使用的时候,常常会产生对数据的怀疑。这些怀疑往往是由于底层的数据对于用户来说是不“透明”的,使用者很自然地对结果产生怀疑。而借助元数据管理系统,最终的使用者对各个数据的来龙去脉以及数据抽取和转换的规则都会很方便地得到,这样他们自然会对数据具有信心;当然也可便捷地发现数据所存在的质量问题。甚至国外有学者还在元数据模型的基础上引入质量维,从更高的角度上来解决这一问题。

(4) 元数据可以支持需求变化
随着信息技术的发展和企业职能的变化,企业的需求也在不断地改变。如何构造一个随着需求改变而平滑变化的软件系统,是软件工程领域中的一个重要问题。传统的信息系统往往是通过文档来适应需求变化,但是仅仅依靠文档还是远远不够的。成功的元数据管理系统可以把整个业务的工作流、数据流和信息流有效地管理起来,使得系统不依赖特定的开发人员,从而提高系统的可扩展性。

简单来说,企业可以尝试以下步骤进行大数据的元数据管理:

考虑到企业可以获取数据的容量和多样性,应该创建一个体现关键大数据业务术语的业务定义词库(本体),该业务定义词库不仅仅包含结构化数据,还可以将半结构化和非结构化数据纳入其中。
及时跟进和理解各种大数据技术中的元数据,提供对其连续、及时地支持,
对业务术语中的敏感大数据进行标记和分类,并执行相应的大数据隐私政策。
将业务元数据和技术元数据进行链接,可以通过操作元数据(如流计算或 ETL 工具所生成的数据)监测大数据的流动;可以通过数据世系分析(血缘分析)在整个信息供应链中实现数据的正向追溯或逆向追溯,了解数据都经历了哪些变化,查看字段在信息供应链各组件间转换是否正确等;可以通过影响分析可以了解具体某个字段的变更会对信息供应链中其他组件中的字段造成哪些影响等。
扩展企业现有的元数据管理角色,以适应大数据治理的需要,提高企业的数据质量,让数据转化为价值。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 持续的业务改进取决于数据治理

    持续的业务改进取决于数据治理

    当我们认为有价值的东西时,我们需要确定我们如何以及何时使用它以及保护它。我们通过建立标准,政策和流程来定义如何利用和保护此资产。……查看详情

    发布时间:2019.01.26来源:亿信华辰浏览量:174次

  • 什么是医疗保健中的数据治理?

    什么是医疗保健中的数据治理?

    数据治理是一种管理数据的方法,允许组织平衡两个需求:收集和保护信息的需求,同时从信息中获取价值。但它远不止于此。健康数据包括患者的个人和……查看详情

    发布时间:2018.11.20来源:数据治理浏览量:141次

  • 数据治理为什么会重新引起关注?

    数据治理为什么会重新引起关注?

    这突出了数据治理的重要性。由数据治理研究所定义为“信息相关过程的决策权和责任系统,根据商定的模型执行,描述谁可以采取什么行动与什么信息,……查看详情

    发布时间:2019.09.04来源:知乎浏览量:177次

  • 如何选择数据治理工具

    如何选择数据治理工具

    有许多场景需要数据治理工具。在严格的行业法规下运营,利用分析软件和/或定期整合关键主题领域的数据的企业将发现自己正在寻找数据治理工具来帮……查看详情

    发布时间:2019.07.04来源:知乎浏览量:127次

  • 可量身定制的数据治理平台

    可量身定制的数据治理平台

    在大数据浪潮下,大数据平台建设如火如荼,大数据平台建设本质上是数据的建设。由于数据量逐渐庞大导致的一系列问题,使很多用户意识到数据治理的……查看详情

    发布时间:2019.11.22来源:CSDN浏览量:200次

  • 如何避免先污染后治理,浅谈数据标准管理的应用

    如何避免先污染后治理,浅谈数据标准管理的应用

    数据质量的提升作为数据治理环节中非常重要的一环,我们的确需要重视,但是我们知其然,还要知其所以然,从数据质量问题出发,我们还得知道到底为……查看详情

    发布时间:2019.12.13来源:亿信华辰浏览量:119次

  • 企业数据质量管理的水平、直接影响数字化转型的进程!

    企业数据质量管理的水平、直接影响数字化转型的进程!

    企业在数字化转型的过程中,需利用云计算、大数据、移动互联和物联网技术,通过新的产品和服务、新的业务模式和新的关系创造价值和竞争优势。数字……查看详情

    发布时间:2019.08.01来源:知乎浏览量:169次

  • 以数据中台为切入点,场景/应用驱动源头数据治理

    以数据中台为切入点,场景/应用驱动源头数据治理

    数据中台通常是应用驱动构建,所处理的数据是业务关心和使用的数据。在数据中台开发与运营服务的过程中,面临很多源头数据的问题,比如不同系统的……查看详情

    发布时间:2020.04.01来源:知乎浏览量:156次

  • 构建业务术语表可以增强数据治理

    构建业务术语表可以增强数据治理

    专家表示,数据专业人员负责在整个组织内建立一个通用词汇表,以帮助确保数据治理成功和遵守GDPR。……查看详情

    发布时间:2019.03.26来源:亿信华辰浏览量:197次

  • 数据治理到底在哪里治?

    数据治理到底在哪里治?

    关于数据中台到底应该在中台治理还是应该在后台治理,数据治理到底应该放在中台,还是后台,我个人的理解是:小数据标准化治理靠人工、大数据预测……查看详情

    发布时间:2020.07.07来源:知乎浏览量:134次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议