大数据资产管理平台建设方案

发布时间:2020.08.28来源:知乎浏览量:169次标签:数据治理

数据资产管理服务工作,涵盖企业IT系统生命周期的不同阶段,协助企业建立适合自身特点的数据资产管理制度,提升企业对自身数据资产管理的能力,为后续数据挖掘变现提供可靠、有价值和高质量的数据,提供更好的产品和服务,降低开发和运维成本,控制风险,以及为企业提供更明智和更有效的决策数据支持。

数据资产管理简介
大数据时代已经来临,数据被业界公认为是企业最宝贵的资产之一,其价值得到了普遍认同。然而,绝大部份传统企业在尝试挖掘数据资产价值的过程中,都出现各种各样的问题,如:

数据架构混乱:系统越来越多,系统复杂度也越来越高,管理难度随之越来越大,没人能弄清整个系统的数据架构和数据流向,数据架构与业务流程、应用架构之间的关系不清晰。

架构管理滞后:甲方越来越依赖开发商,自身的系统数据架构管理力度不断减弱。同时,开发商以实现功能为主,对非功能性需求不太在意,导致版本质量不高,先实现后优化,优化效果滞后。
 
架构变更失控:大多数系统都处于积术式叠代开发,有新需求就加一堆表,使系统数据模型越来越雍肿;数据模型设计缺少审查,导致数据模型混乱、复杂、扩展性差。

数据无序增长:企业核心业务系统数据容量无序增长,长期处于“系统扩容 - 数据膨胀 - 性能低下 - 系统扩容”的怪圈之中。

数据标准缺失:缺少企业级别统一的数据标准,数据模型相关含义令开发和运维人员难以理解;同时,亦使得企业不同应用间的数据集成和数据共享困难。

数据安全突出:对企业的敏感数据、用户、访问权限仍然缺少认识和控制,敏感数据泄漏的安全事件屡见不鲜。

数据质量参差:数据处理环节中产生大量的错误和质量差的数据,数据错误发现和处理流程不及时,导致更多的后续错误。

数据资产管理(Data Asset Management,简称DAM)是规划、控制、和提供数据这种企业资产的一组业务职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方案和程序。企业依赖有效数据资产管理为其提供可靠、有价值和高质量的数据,提供更好的产品和服务,降低开发和运维成本,控制风险,以及为企业提供更明智和更有效的决策数据支持。

2、数据资产管理功能与特点
在传统行业中有丰富的数据资产管理相关项目经验,通过各种不同行业数据资产管理项目的成功经验总结,同时以DAMA等国外先进的数据资产管理理论为指导,归纳和梳理出数据资产管理服务框架。
 
数据资产管理率先提出以“服务”+“平台”的二元制方式驱动企业数据资产管理的迅速落地和开展。
服务:数据资产管理服务以数据架构管理为核心,涵盖数据标准、数据生命周期、数据分布、数据质量、数据安全以及数据操作等数据资产管理的各个方面。

3、数据资产管理解决问题
数据资产管理服务工作,涵盖企业IT系统生命周期的不同阶段,协助企业建立适合自身特点的数据资产管理制度,提升企业对自身数据资产管理的能力,为后续数据挖掘变现提供可靠、有价值和高质量的数据,提供更好的产品和服务,降低开发和运维成本,控制风险,以及为企业提供更明智和更有效的决策数据支持。

数据资产管理平台实现数据资产的可视化、自动化和智能化运营,让数据资产管理团队从众多纷繁复杂的数据管理工作中解放出来,降低整体人员投入和成本投入。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业何时进行数据治理才是最佳时机

    企业何时进行数据治理才是最佳时机

    找准数据治理的切入点,是关乎数据治理成败的关键。如果将数仓建设分为数仓雏形阶段、数仓迭代阶段和能力沉淀阶段,数据治理应该在哪个阶段切入为……查看详情

    发布时间:2020.06.30来源:知乎浏览量:100次

  • 谈大数据时代下的数据治理

    谈大数据时代下的数据治理

    2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划……查看详情

    发布时间:2019.01.03来源:亿信华辰浏览量:106次

  • 谈谈数据治理是什么?

    谈谈数据治理是什么?

    数据治理这项工作一直都是存在的,和数据库设计的三范式一样都是为了数据的管理。数据治理是一整套完整的组织、制度、技术管理行为。……查看详情

    发布时间:2021.03.06来源:人人都是产品经理浏览量:140次

  • 不同部门的数据分析需求,如何满足?

    不同部门的数据分析需求,如何满足?

    让数据驱动落地企业,要先明确商业目的是什么,找到方向才能更好地指导业务。在互联网金融企业中,用户与交易额是各部门工作开展的核心所在。互金……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:118次

  • 数据集成的原理

    数据集成的原理

    在Experian Data Quality上多次使用这个类比,但这仅仅是因为它在引用数据标准化时非常有意义。 数据标准化只是构建……查看详情

    发布时间:2018.12.29来源:数据治理浏览量:129次

  • 数据治理和数据管理推动成功的词汇表和词典

    数据治理和数据管理推动成功的词汇表和词典

    任何数据管理员的噩梦都是运行会议,创建迂腐和无关的业务词汇表或数据词典,最终收集网络粉尘。但是,跳过构建和维护良好的业务术语表或数据字典……查看详情

    发布时间:2019.02.21来源:亿信华辰浏览量:137次

  • 数据质量和数据治理之间有什么区别?

    数据质量和数据治理之间有什么区别?

    跟上无穷无尽的技术术语可能是一项艰巨的任务。松散定义的术语和行业特定的白话使水更加泥泞。特别是在数据管理方面,似乎许多单词也可以互换使用……查看详情

    发布时间:2019.07.04来源:知乎浏览量:113次

  • 建设数据中台,企业数字化转型的最佳入口

    建设数据中台,企业数字化转型的最佳入口

    以数据驱动的数字化,将帮助企业全面了解用户的需求变化,也能为企业在营销、产品、业务等各个环节提供支撑,进一步提升企业的经营效率。 但在开……查看详情

    发布时间:2021.01.22来源:头条浏览量:133次

  • 大数据平台安全防护——亿信华辰

    大数据平台安全防护——亿信华辰

    企业大数据数据源接入越来越多、数据量越来越大、平台越来越复杂,保存了很多企业敏感数据,甚至客户隐私信息。随着数据商业价值的增加,针对数据……查看详情

    发布时间:2019.01.10来源:亿信华辰浏览量:203次

  • 五方面提升银行业数据治理能力

    五方面提升银行业数据治理能力

    银行业面临着数据治理的紧迫需求,应该多措并举提升数据治理能力。……查看详情

    发布时间:2019.11.28来源:知乎浏览量:162次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议