可量身定制的数据治理平台

发布时间:2019.11.22来源:CSDN浏览量:214次标签:数据治理

在大数据浪潮下,大数据平台建设如火如荼,大数据平台建设本质上是数据的建设。由于数据量逐渐庞大导致的一系列问题,使很多用户意识到数据治理的重要性,因此数据治理也逐渐在各行业大数据平台建设中引起极大的关注。

目前大数据平台的突出问题主要体现在数据结构、网络环境的复杂性以及数据不准不全、不深不细、数据应用场景缺失、数据标准不一致等方面。针对上述问题,亿信华辰软件有限责任公司完全自主研发的一站式综合数据治理整体解决方案,是一款面向全用户角色的、智能的、敏捷的数据全生命周期管理应用平台。睿治平台摆脱了传统的一个问题一个工具的局限性,实现了数据治理场景全覆盖,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,所有模块可自由组合,并支持本地或云上使用,全面满足客户各类治理需求。



亿信睿治作为国内少有的覆盖数据全生命周期的数据治理平台,全界面操作,“零”表达式治理,极高的易用性,可高效便捷完成数据从创建到消亡的全过程的监控和治理。一站式数据统一管理,保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,从而帮助客户建立起符合自身特征的数据架构和数据治理体系。可根据用户的需求量身定制。

数据治理

睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:

1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;

2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;

3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。 

睿治具备难以超越的核心竞争力:

1、睿治各模块高度融合,各功能可互相调用,全程可视化操作,打通数据治理各环节;

2、先进的产品设计理念,充分依照国际规范、标准,具有国内先进水平;3、丰富的项目实践经验,深耕大数据领域十多年,着眼于打造数据全生命周期的智能化产品线;

4、专业的服务保障团队,遍布全国,及时响应。 

睿治平台致力于打造“平台化、可视化、智能化”数据治理解决方案。

1、架构统一,基于全新Spring Boot+EUI开发,微服务架构,延展性强;

2、全界面操作,“零”表达式治理,实现治理全过程可视化,全角色可视化;

3、内置智能算法,多场景自动化、智能化治理。 

睿治的通用扩展性之高,广受好评。平台基于各行业数据共性,采用成熟模块化设计理念,实现各模块功能各行业应用场景普遍适用;平台功能全面,灵活组装,可对数据从创建到消亡全过程监控和治理;平台提供丰富的服务接口,内置脚本支持,全面满足集成、扩展需要。 



数据治理不是一个临时性的行为,而是一项基础性的工作,需要从战略上落实,从上到下进行推动,进而使数据创造更多价值。下一步,亿信华辰将以数据安全为基石,提供高附加值数据服务,持续打造具有定制化特色的数据治理平台,为数据建设保驾护航,构筑稳定之基。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 灵活的分析数据生命周期?

    灵活的分析数据生命周期?

    受监管实验室数据完整性指南的要求之一是数据生命周期,涵盖监管记录的生死。数据生命周期在最近的MHRA数据完整性指南中定义为“从生成和记录……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:173次

  • 元数据:数据治理的燃料

    元数据:数据治理的燃料

    企业渴望从可提供竞争优势的数据中获取洞察力。实现这一目标的最常见障碍是数据质量差。如果输入到预测算法的数据是“脏的”(具有丢失或无效的值……查看详情

    发布时间:2019.08.02来源:知乎浏览量:159次

  • 数据标准在数据资产管理中的意义

    数据标准在数据资产管理中的意义

    尽管出现了很多专家和专著,但真正理解这个概念的人并不多,懂得如何实操数据资产管理、在企业中真正落地的更寥寥无几。笔者有幸参与了国内几个典……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:158次

  • 中小银行行数据治理是否错过最佳建设期?

    中小银行行数据治理是否错过最佳建设期?

    数据治理基础建设缺失、人才匮乏、意识觉醒较晚。目前中小银行数据治理难点有哪些?中小银行行数据治理是否错过最佳建设期。……查看详情

    发布时间:2019.11.28来源:知乎浏览量:115次

  • 大数据是大问题?组织需要为数据管理负责

    大数据是大问题?组织需要为数据管理负责

    如果数据收集在2018年让人们明白一件事的话,那就是使用数据的公司与商业模式依赖数据利用的公司之间存在一条明显而深刻的界线。由于剑桥分析……查看详情

    发布时间:2019.04.09来源:亿信华辰浏览量:126次

  • 如今传统企业如何做数字化转型?

    如今传统企业如何做数字化转型?

    什么是数字化转型?“数字化转型”实际上就是对业务过程进行的重塑,通过重塑使其默认就更加适应更全面的在线环境,从最……查看详情

    发布时间:2020.07.31来源:知乎浏览量:129次

  • 简述数据资产管理方案必须注意的6点

    简述数据资产管理方案必须注意的6点

    “数据资产管理”一词,在国内首次由DAMS(中国数据资产管理峰会)组委会正式提出。首届“中国数据资产……查看详情

    发布时间:2020.08.14来源:知乎浏览量:159次

  • 让数据中心甩掉能耗沉重账单

    让数据中心甩掉能耗沉重账单

    当今,全世界新产生的数据正以惊人速度增长。据统计,平均每11个月全世界的数据量即将翻倍,而且随着时间的发展,这个周期还在缩短。这意味着我……查看详情

    发布时间:2019.03.11来源:亿信华辰浏览量:136次

  • 数据虚拟化 实现大数据的有效管理

    数据虚拟化 实现大数据的有效管理

    关于在石油天然气的钻探和出产过程中所发生的数据的价值,并没有太多的争议。尽管数字化油田运动的最初意图,是将与设备的监测和维护相关的使命完……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:151次

  • 数据治理模型 - 组织数据质量管理的责任

    数据治理模型 - 组织数据质量管理的责任

    企业需要数据质量管理(DQM),它结合了业务驱动和技术观点,以应对需要高质量企业数据的战略和运营挑战。迄今为止,公司已将DQM的责任主要……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:197次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议