数据治理股票检查:使用数据治理来计算您的数据资产
发布时间:2019.04.03来源:亿信华辰浏览量:129次标签:数据治理
为了遵守法规(例如,GDPR)并确保业务绩效达到峰值,组织通常会聘请顾问来帮助评估其数据资产。这种数据治理“库存检查”很重要,但如果没有正确的方法和技术,则可能是艰巨的。这就是数据治理的用武之地......
虽然大多数公司在关系数据库中占据了大部分运营数据,但它也可以存在于许多其他地方和各种其他格式中。因此,组织需要能够从任何地方管理任何数据,我们称之为“任意平方”(任意2)的数据治理方法。
任何2首先需要了解数据的“3V” - 数量,种类和速度 - 特别是在数据生命周期的背景下,以及了解如何利用数据治理的关键功能 - 数据编目,数据素养,业务流程,企业架构和数据建模 - 使数据能够在不同阶段得到利用,以实现最佳安全性,质量和价值。
数据治理“股票检查”案例1:数据代理
该客户交易信息。因此,组织需要对从供应商处获取的数据进行编目,确保其质量,对其进行分类,然后将其出售给客户。该公司希望将数据汇集到数据仓库中,然后提供对其的受控访问。
帮助该客户完成现有数据的第一步。我们建立了一个门户网站,因此可以通过带有基本问题的表格来注册数据资产,然后中央团队收到注册,审核并确定其优先顺序。还设置了权利属性以标识和分析高优先级资产。
使用了许多最佳实践和技术解决方案来建立管理数据馈送的注册和分类所需的数据:
1.收集基础元数据,然后进行初始质量检查。然后,根据业务词汇表中保存的语义模型对元数据进行分类。
2.在该分类之后,基于与语义模型相关联的最佳实践规则执行第二数据质量检查。
3.已分析的资产被加载到仓库内的历史数据存储中,数据治理工具生成其结构和数据移动操作以进行数据加载。
4.我们制定了变更管理计划,使所有员工都了解信息经纪门户网站以及使用它的重要性。它使用数据资产目录,所有数据资产都根据具有数据质量指标的语义模型进行分类,以便轻松了解数据资产在数据仓库中的位置。
5.采用这个门户,数据根据本体进行注册和分类,使客户的客户能够按资产或意义购买数据(例如,“您对X主题有什么数据?”),然后向下钻取分类学或跨本体论。接下来,他们提出购买所需数据的请求。
这种咨询参与和技术实施增加了数据可访问性和资本化。信息通过批准的工作流在中央门户中注册,然后客户从物理资产列表或信息内容购买数据,购买请求也通过批准工作流程。除其他安全措施外,这还可确保数据质量。
数据治理“股票检查”案例2:跟踪恶意数据
此客户端具有地理位置分散的组织,可将其许多关键流程存储在Microsoft Excel TM电子表格中。他们计划迁移到Office 365 TM并关注合规性,包括GDPR要求。
由于知道电子文档在关键业务流程中被大量使用并分布在整个组织中,因此该公司需要使用集中的自动化系统来替换风险较高的手动流程。
咨询服务的一个关键部分是了解哪些数据资产在流通以及组织如何使用它们。然后可以优先处理流程链以自动化和概述系统的规范以替换它们。
该组织还采用了一个中央门户网站,允许员工注册数据资产。相关的变更管理计划提高了整个组织数据治理的意识以及数据注册的重要性。
对于每个资产,信息都被捕获并作为工作流程的一部分进行审核。然后选择优先资产进行分析,使元数据在被分类为业务术语表之前进行反向工程。
此外,作为流程链一部分的资产通过企业架构(EA)和业务流程(BP)建模工具进行收集和建模,以进行影响分析。
然后,可以在EA / BP工具中再次定义新系统的高级要求,并在项目列表中确定优先级。对于其他人,可以决定是否可以安全地放置在云中以及是否需要宏。
在这种情况下,采用专用数据治理解决方案有助于建立对数据资产的理解,包括有关其使用和内容的信息,以帮助决策。
然后,该客户端可以很好地处理存储在其系统中的敏感数据方面的“内容”和“位置”。他们还更好地了解这些敏感数据的使用方式以及由谁使用,有助于降低与GDPR相关的监管风险。
在这两种情况下,我们都会对数据资产进行编目并将其映射到业务词汇表。它充当分类方案,以帮助管理数据和定位数据,使其更易于访问和有价值。此治理框架可降低风险并保护其最有价值或最敏感的数据资产。
-
企业怎样建立完整的数据治理体系?
大数据智能时代,管理不再是传统的做法,一套完善的数据管理体系是企业长远要生存的必须择决。我们的生活已经离不开大数据,企业的数据管理不仅能……查看详情发布时间:2020.03.26来源:知乎浏览量:76次
-
管理数据与拥有数据一样重要:关注数据治理和数据质量
在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟……查看详情发布时间:2019.09.20来源:知乎浏览量:123次
-
主数据管理第一步——识别主数据
主数据管理的目的就是为了确保企业核心数据的准确性、一致性、稳定性,打破数据孤岛,帮助企业高效运转。然而在茫茫数据大海中识别出主数据是一项……查看详情发布时间:2019.10.24来源:亿信华辰浏览量:86次
-
电力数据治理方案如何实施?要注意什么?
电力行业数据治理痛点,包括整体架构缺乏统一的数据中心,孤岛现象严重;数据治理方面缺乏统一的数据标准和数据质量关系;电力数据治理方案如何实……查看详情发布时间:2021.04.09来源:亿信数据治理研究院浏览量:384次
-
大数据对社会有多大用处?
规范性分析是商业智能(BI)中使用的四种大数据类型之一。大数据是一个描述大量数据的术语-结构化和非结构化-这些大量数据淹没了企业或任何数……查看详情发布时间:2018.12.29来源:数据治理浏览量:92次
-
数据太多、太乱、太差?你需要这样一套数据治理工具
为了规范数据处理过程,凸显数据业务价值,需对数据进行综合管理,构建标准化、流程化、自动化、一体化的数据治理体系,确保数据架构规划合理、数……查看详情发布时间:2021.07.16来源:亿信数据治理知识库浏览量:115次
-
询问数据治理专家:我的数据治理计划需要多长时间?
数据治理应该是您正在组织中实现和嵌入的东西,以便它像往常一样成为业务的一部分。出于这个原因,任何与我合作或参加我的培训课程的人都知道,我……查看详情发布时间:2018.12.21来源:数据治理浏览量:159次
-
数据治理成功要素:制定数据质量管理办法及标准
数据质量管理是指为了满足信息系统的需要,对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的各类数据质量问题,……查看详情发布时间:2022.02.25来源:小亿浏览量:213次
-
你认为你知道什么是数据治理吗?
数据治理是当今一个相对较新且非常热门的话题。因此,毫不奇怪,对数据治理的定义有多种不同的定义。大多数这些定义都是自我服务……查看详情发布时间:2018.11.19来源:丹尼尔舒勒浏览量:81次
-
数据治理:建设大数据平台就够了?你还要做这件事
长期以来,大家一直忽略一个问题:数据跟原来的企业应用系统一样,它是需要被管理的。企业逐渐了解数据所蕴含的价值,对数据的重视程度越来越高。……查看详情发布时间:2018.12.12来源:亿信华辰浏览量:80次