企业数据质量是数字化时代企业的重要资产

发布时间:2020.01.10来源:知乎浏览量:155次标签:数据治理

大数据的概念正在进一步渗透到各个行业与领域当中,随着企业业务增长和规模扩大,以及伴随着信息技术和相关基础设施的不断完善,在短短的几年内,数据已经呈现了爆发式的增长,多数传统企业也开始走上了数字化转型的道路。数据中蕴藏的商业价值也逐渐被人们挖掘出来:客户群体细分提供个性化服务和精准营销、数据驱动创新促进发掘新的需求和商业模式、数据互联互通打破了组织边界提高管理效率和产业效率,以及降低服务成本。

企业数据质量
数据是数字化时代企业的重要资产,数据可以以产品或服务的形态为企业创造价值。既然数据可以是产品、可以是服务,那问题就简单了。虽然数据质量管理没有成熟方法论支撑,但是产品和服务的质量管理体系却已非常的成熟了,何不尝试用产品和服务的质量管理体系来管理数据质量?!那国际上最权威的质量管理体系IOS9001是否也适用于企业的数据质量管理呢?

数据治理方面,不论是国际的还是国内的,我们能找到很多数据治理成熟度评估模型这样的理论框架,作为企业实施的指引。而说到数据质量管理的方法论,其实业内还没有一套科学、完整的数据质量管理的体系。很多企业对数据质量的重视程度还不够,即使部分企业在朝着这个方向努力,也是摸着石头过河。

下图是ISO9001基于PDCA的质量管理核心思想,其重点强调以客户为关注焦点、领导作用、全员参与、过程方法、持续改进、循证决策和关系管理。

依据ISO9001以及企业在数据治理方面的相关经验,亿信华辰认为企业数据质量管理应从以下几个方面着手:

1. 明确目标
这里先提一个概念:数据生命周期管理。数据的生命周期从数据规划开始,中间是一个包括产生、处理、部署、应用、监控、存档、销毁这几个步骤并不断迭代的过程。那么在其中任何一个环节都会涉及到数据质量的管理。因此当我们确定此次数据质量评估的目标时,首先要定位当前的数据处于生命周期的哪个阶段,进一步明确后续步骤对于数据质量的需求有哪些。数据价值的体现形式在于数据通过流动最终被消费。同一份数据在不同的生命周期中,其质量的关注点是存在差异的,因此很重要的一点就是明确当前阶段数据质量管理的目标是什么。有了明确的目标,才能开始对数据进行合理的评估。

2. 构建数据全景图
许多企业进行数据质量评估的时候很容易只关注在当前企业的现有数据。从而忽视了当前企业中暂时没有的数据。我们知道,数据可以划分为内部数据和外部数据,还可以通过数据交易获取数据。因此对于数据质量管理,很重要的一点就是企业首先要构建一个数据全景图。基于生态或者完整的业务全景来构建数据全景。数据全景图与业务是不可分离的,因此,脱离了业务,或者仅仅围绕部分当前的业务进行质量的评估,并不能从长远和全局的角度给我们的数据质量管理带来更加价值的指导意义。既要关注当下的现状,又要着眼于未来的演变。

3. 选取数据质量维度
评价数据质量的维度有很多,例如:数据准确性、数据一致性、数据的实效性、数据的完整性等等。可列举出十几种维度或者更多,在许多地方都会有对数据质量维度的具体解释。那么在这里我们要关注的是如何选取维度。尽管每一个维度都与质量相关联,但是并不是每一个维度对质量都会产生相同的影响作用。因此,我们需要对选取几个我们最为关注的数据质量维度来对其进行评估。选取过多的维度会增加后续数据质量评估模型的复杂度,并会增加采样数据,度量质量的成本和难度。而选取过少的维度又不能全面的反应数据质量。一般来说,4-7个维度是比较合理的选择。当然,根据实际需要,也可以定义自己的质量维度和选取适当的数量。

4. 制定数据质量评估模型
经过上一步选定了进行质量度量的维度,接下来就是对数据评估进行建模。建模的目的是我们在对各个维度进行质量度量之后,需要对度量结果进行一个计算,得到一个更加直观的分数来衡量数据质量的好坏。建模本身也是一个复杂的工程,当然简单的评估模型可以是一个线性模型,既各个维度的数值乘以一个权重然后进行累加。也可以是一个很复杂的数学模型,甚至会对模型进行调参。建模本身需要对数据有一定敏感性和深刻的理解,同时需要具备一定的数学知识。

5. 确定数据质量度量标准和度量方法
在数据质量的众多维度当中,有些维度是很容易进行度量的,例如缺失率。缺失率的计算只要统计出缺失的数据量在整个数据集中的占比就可以得出一个具体的值。然而有些维度,例如实效性、一致性等如果要进行度量的话,就不是那么容易了。我们需要在度量之前定义出度量的标准是什么,基于这个标准,再确定度量的方法。就是我们如何把一些描述性的度量全部转化成为可以量化的数值或者比率。需要这样一个量化的过程,才能够将这些度量结果通过模型计算,最终得出一个质量的评估结果。度量的方法也会分为多种,可以是人工去对比,也可以用程序化的方式进行对比,或者采用统计学的方式来进行度量。

6. 实施数据质量评估并撰写评估报告
终于到了最后的实施环节,在实施的环节需要考虑的是数据采样策略。如果数据量小,我们可以对全部数据进行度量和评估。如果数据量很大或者对全量数据进行评估成本过高,那么就需要进行部分数据采样,对样本数据进行评估。数据会有其自身的一些特点,例如周期性或者实效性。因此在制定抽样策略和抽样频率的时候,不能不考虑这些因素,否则采样数据得出的评估结论很可能就会与全量数据的真实情况有较大的偏差,因此如何尽可能的减少偏差也是一个需要思考的问题。

经过抽样、度量、评估之后,就可以得到评估结论了。最后我们需要的就是撰写一份评估的报告,在这份报告当中,除了最后的结论,应当还包括对这个结论的分析和解读,并通过一些可视化的方式展现在报告当中。数据质量评估报告不是最终的目的,这份报告对后续数据质量的管理,数据治理等都具有非常重要的参考意义。因此,在这份报告中应当包含结论、分析以及只质量改善建议这几个方面。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据不是石油,占得多未必有用

    数据不是石油,占得多未必有用

    如果您从事数据科学或相关领域的工作,您可能之前听过这个说法:数据是新的石油资源。……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:124次

  • 国内数据治理有何新动向?

    国内数据治理有何新动向?

    大数据时代,大数据技术在飞速的发展,逐渐的,大数据融入了各行各业,并且深受各大企业的喜欢,为了让各个企业的数据资产得到充分的利用,数据治……查看详情

    发布时间:2019.09.23来源:知乎浏览量:176次

  • 浅谈银行的数据治理有哪些问题

    浅谈银行的数据治理有哪些问题

    企业数据治理的实践来看,目前在数据标准化这块落地也存在很大的困难,虽然现在有些企业在数据标准整理上已经基本上有了一个完整的标准,也存在标……查看详情

    发布时间:2020.02.21来源:知乎浏览量:135次

  • 企业数据治理需要的能力

    企业数据治理需要的能力

    数据治理必然带来新的标准的确立和旧系统的改造,是一个有破有立、无破不立的过程。这一过程设计大量的跨部门、跨条线、跨系统的沟通协调,同时也……查看详情

    发布时间:2021.09.06来源:亿信华辰浏览量:161次

  • 大数据治理需要具备哪些能力和关键技术

    大数据治理需要具备哪些能力和关键技术

    从企业的数据资产管理和提升数据质量等的数据应用上,大数据治理的内容在不断地发展和完善,在其落地实施的过程中面临着巨大的挑战。我们现在通过……查看详情

    发布时间:2019.08.13来源:知乎浏览量:143次

  • 数据治理和成熟度评估模型

    数据治理和成熟度评估模型

    成熟度评估没有“ 一种模式适合所有人 ”。……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:164次

  • 数据质量六大评价标准是什么

    数据质量六大评价标准是什么

    随着大数据时代的带来,数据的应用也日趋繁茂,越来越多的应用和服务都基于数据而建立,数据的重要性不言而喻。而且,数据质量是数据分析和数据挖……查看详情

    发布时间:2022.03.28来源:小亿浏览量:6358次

  • 数据治理中如何做好数据清理与归档

    数据治理中如何做好数据清理与归档

    传统上,数据的清理和归档属于DBA的职责,随着企业数字化转型、数据治理工作的推进,这项工作也被纳入了数据治理工作的重要内容。数据团队定期……查看详情

    发布时间:2022.05.31来源:互联网浏览量:470次

  • 产生影响:数据治理和企业架构的失落艺术

    产生影响:数据治理和企业架构的失落艺术

    看起来我们忙着跑步,以至于我们没有时间思考。我们希望更快,更快速,但我们甚至不确定我们想要实现的目标。这就像你办公室的人总是太忙,正在工……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:128次

  • 简述数据资产管理方案必须注意的6点

    简述数据资产管理方案必须注意的6点

    “数据资产管理”一词,在国内首次由DAMS(中国数据资产管理峰会)组委会正式提出。首届“中国数据资产……查看详情

    发布时间:2020.08.14来源:知乎浏览量:154次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议