数据治理——银行将被如何规范?

发布时间:2019.01.18来源:亿信华辰浏览量:131次标签:数据治理


近日,银监会就《银行业金融机构数据治理指引》向社会公开征求意见,为引导银行业金融机构加强数据治理、提高数据质量、发挥数据价值,提升经营管理能力,特制定本指引。

我们认为,此番对数据治理的指引,未来可能会被其他金融监管机构作为范本,约束互联网金融或其他业态的数据治理行为,因此,具有学习和研究价值。

1、“数据治理”是个啥?

本指引在第三条给出了“数字治理”的定义,通过建立组织架构、明确董事会、高级管理层、部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。

从我们的视角看,银行数据治理关系到每个储户的“公民信息安全”,责任重大。

去年,我国在保护公民信息方面立法更完善,且下半年刑法第253条之一侵犯公民信息罪被严格适用。

从治理效果看,确实震慑了某些从银行业务中获取信息想卖给他人或与他人交换的人,涤清了银行等金融机构内部环境。当然,数据治理中也会涉及到银行的商业秘密等知识产权保护等,在此不表。

2、数据治理的原则有哪些?

银行业金融机构数据治理应当遵守四个原则:

(一)全覆盖原则:覆盖数据的全生命周期;覆盖业务经营、风险管理和内部控制流程中的全部数据;覆盖内部数据和外部数据,覆盖所有分支机构和附属机构数据;覆盖监管数据。(在全覆盖原则下,我们提示业内机构注意,不同法人主体之间的数据不可随意交换使用,涉及公民个人信息,必须经过重新授权方可进行)

(二)匹配性原则:数据治理应当与管理模式、业务规模、风险状况等相适应,并根据情况变化进行调整。(介个木有啥好解释的,就是实事求是)

(三)持续性原则:数据治理应当持续开展,建立长效机制。(不是一阵风,而是以后长期坚持的一项任务)

(四)有效性原则:数据治理应当推动数据真实准确客观反映银行业金融机构实际情况,并有效应用于经营管理。(世界上最可怕的是最初采集的数据就是假的,去伪存真的任务很重,而且依靠区块链等技术也解决不了最初数据的真实性核验工作)

3、数据标准与共享

银行业金融机构应当建立覆盖全部数据的标准化规划,遵循统一的业务规范和技术标准。数据标准应当符合国家标准化政策及监管规定。也就是说,未来在银行业金融机构范围内,会有相应官家标准或行业标准出现。

Reg-tech监管科技将发力,各大银行业机构应当建立适应监管数据报送工作需要的信息系统,实现流程控制的程序化,提高监管数据加工的自动化程度。

最终,还是要实现数据共享,but,这里的数据共享不是A银行给B银行一个片区的客户名单,B银行回馈给对方另一个片区的客户理财数据,而是,必须经过“数据脱敏”之后方可“共享”。

如果出现数据泄露,根据指引第二十七条的规定,银行业金融机构应当设立问责机制,定期监控数据管理、数据质量控制、数据价值实现等问题,依据有关规定对高管和部门及负责人予以问责。其实,我们认为,这里应该加上一句,“构成犯罪的,按照刑法处理”。

4、数据质量控制有要求

说到底,数据质量控制就是:保证数据的真实性、准确性、连续性、完整性和及时性。采用取数规则统一,加强源头管理,设立监控体系,现场检查制度,设立考核评价体系,配有质量整改制度,保证统一监管指标在报送与对外披露之间的一致性,最后,还要建立监管数据质量管控制度。

请注意,面子和里子的统一,具有重要意义,报送给监管机构的指标如果是25cm,那么,披露给社会公众的指标也应该是25cm,我们允许误差,但不允许失误。有的人说,失误就是过失,过失又不犯法,这明显不懂法,在我国有些犯罪不需要故意,只要过失即可,会计执业中就有类似的高危罪名。

5、数据价值的实现才是指引的精髓

银行业金融机构,应当在风险管理、业务经营、内控中加强数据应用,实现价值驱动,提高管理精细化水平,发挥数据价值。

运用大数据,对于传统银行的风控管理而言,是一大进步。如果更精细地鉴别和使用数据,更科学地分析,更有效地利用,可大大提高银行的风控能力,对于全球系统重要性银行要遵循更高的标准。

做好风险管理,还要注意风险监控,一个人开车就要一个人提醒。

在银行平日工作中,注意监测、评估、报告和控制风险,是一种“双保险”的办法。同时,在数据加总能力、风险报告、风险定价、重大收购、资产剥离、新产品评估、客户营销、业务流程优化、业务创新、内控评价等方面,进行规范。

最后,监管将采取持续监管的方式,具体通过现场监管与非现场监管来监督;同时,审计机构要进行数据治理审计,及时出具报告;对不符合指引要求的机构,责令整改,将公司治理评价结果或监管评级挂钩等。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 2019年的数据前景如何

    2019年的数据前景如何

    这三个与数据相关的趋势今年值得关注。 公司喜欢技术堆栈所有层的“即服务”模式,从云供应商提供的基础架构到完整的SaaS应用程序。但是……查看详情

    发布时间:2019.01.07来源:数据治理浏览量:137次

  • 数据治理:你如何叠加?

    数据治理:你如何叠加?

    企业和组织生成的数据比他们知道的更多。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:121次

  • 如何选择正确的数据治理工具

    如何选择正确的数据治理工具

    通过选择和利用具有嵌入式质量控制的智能和工作流驱动的自助数据治理工具,您可以实施可扩展的信任系统。让我们探索一些方法来为您的团队找到合适……查看详情

    发布时间:2021.06.16来源:亿信数据治理知识库浏览量:95次

  • 数据治理成功的预测指标

    数据治理成功的预测指标

    简而言之,数据治理项目在组织内经常遇到的挑战通常与高级管理层和业务中的数据文化状态密切相关。从这两个利益相关方团体获得支持可以显着提高数……查看详情

    发布时间:2019.03.22来源:亿信华辰浏览量:123次

  • 大数据是大问题?组织需要为数据管理负责

    大数据是大问题?组织需要为数据管理负责

    如果数据收集在2018年让人们明白一件事的话,那就是使用数据的公司与商业模式依赖数据利用的公司之间存在一条明显而深刻的界线。……查看详情

    发布时间:2019.04.08来源:亿信华辰浏览量:130次

  • 数字化时代的大数据治理应该怎么做呢?

    数字化时代的大数据治理应该怎么做呢?

    随着时代的发展,各个企业收集数据的渠道越来越多样化,也有越来越多的企业开始应用大数据来创造价值,为了合理有效的挖掘数据资源来源的价值,首……查看详情

    发布时间:2019.07.17来源:知乎浏览量:149次

  • 数据治理的7大误区

    数据治理的7大误区

    大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大……查看详情

    发布时间:2018.11.30来源:51cto浏览量:122次

  • 银行业数据治理实践难点及应对-数据治理实践

    银行业数据治理实践难点及应对-数据治理实践

    数据治理已成为在全球各国领导层面进行讨论的中心议题,其背景和目的,主要是旨在推动建立新的国际数据监管体系。在我国的金融行业中,随着互联网……查看详情

    发布时间:2019.12.20来源:知乎浏览量:107次

  • 数据治理模型 - 组织数据质量管理的责任

    数据治理模型 - 组织数据质量管理的责任

    企业需要数据质量管理(DQM),它结合了业务驱动和技术观点,以应对需要高质量企业数据的战略和运营挑战。迄今为止,公司已将DQM的责任主要……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:170次

  • 为什么数据标准这么重要,三个小招教你实现

    为什么数据标准这么重要,三个小招教你实现

    评价是现代社会各领域的一项经常性的工作,是科学做出管理决策的重要依据。随着人们研究领域的不断扩大,所面临的评价对象日趋复杂,如果仅依据单……查看详情

    发布时间:2020.07.17来源:CSDN浏览量:85次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议