数据治理——银行将被如何规范?

发布时间:2019.01.18来源:亿信华辰浏览量:4次标签:数据治理


近日,银监会就《银行业金融机构数据治理指引》向社会公开征求意见,为引导银行业金融机构加强数据治理、提高数据质量、发挥数据价值,提升经营管理能力,特制定本指引。

我们认为,此番对数据治理的指引,未来可能会被其他金融监管机构作为范本,约束互联网金融或其他业态的数据治理行为,因此,具有学习和研究价值。

1、“数据治理”是个啥?

本指引在第三条给出了“数字治理”的定义,通过建立组织架构、明确董事会、高级管理层、部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。

从我们的视角看,银行数据治理关系到每个储户的“公民信息安全”,责任重大。

去年,我国在保护公民信息方面立法更完善,且下半年刑法第253条之一侵犯公民信息罪被严格适用。

从治理效果看,确实震慑了某些从银行业务中获取信息想卖给他人或与他人交换的人,涤清了银行等金融机构内部环境。当然,数据治理中也会涉及到银行的商业秘密等知识产权保护等,在此不表。

2、数据治理的原则有哪些?

银行业金融机构数据治理应当遵守四个原则:

(一)全覆盖原则:覆盖数据的全生命周期;覆盖业务经营、风险管理和内部控制流程中的全部数据;覆盖内部数据和外部数据,覆盖所有分支机构和附属机构数据;覆盖监管数据。(在全覆盖原则下,我们提示业内机构注意,不同法人主体之间的数据不可随意交换使用,涉及公民个人信息,必须经过重新授权方可进行)

(二)匹配性原则:数据治理应当与管理模式、业务规模、风险状况等相适应,并根据情况变化进行调整。(介个木有啥好解释的,就是实事求是)

(三)持续性原则:数据治理应当持续开展,建立长效机制。(不是一阵风,而是以后长期坚持的一项任务)

(四)有效性原则:数据治理应当推动数据真实准确客观反映银行业金融机构实际情况,并有效应用于经营管理。(世界上最可怕的是最初采集的数据就是假的,去伪存真的任务很重,而且依靠区块链等技术也解决不了最初数据的真实性核验工作)

3、数据标准与共享

银行业金融机构应当建立覆盖全部数据的标准化规划,遵循统一的业务规范和技术标准。数据标准应当符合国家标准化政策及监管规定。也就是说,未来在银行业金融机构范围内,会有相应官家标准或行业标准出现。

Reg-tech监管科技将发力,各大银行业机构应当建立适应监管数据报送工作需要的信息系统,实现流程控制的程序化,提高监管数据加工的自动化程度。

最终,还是要实现数据共享,but,这里的数据共享不是A银行给B银行一个片区的客户名单,B银行回馈给对方另一个片区的客户理财数据,而是,必须经过“数据脱敏”之后方可“共享”。

如果出现数据泄露,根据指引第二十七条的规定,银行业金融机构应当设立问责机制,定期监控数据管理、数据质量控制、数据价值实现等问题,依据有关规定对高管和部门及负责人予以问责。其实,我们认为,这里应该加上一句,“构成犯罪的,按照刑法处理”。

4、数据质量控制有要求

说到底,数据质量控制就是:保证数据的真实性、准确性、连续性、完整性和及时性。采用取数规则统一,加强源头管理,设立监控体系,现场检查制度,设立考核评价体系,配有质量整改制度,保证统一监管指标在报送与对外披露之间的一致性,最后,还要建立监管数据质量管控制度。

请注意,面子和里子的统一,具有重要意义,报送给监管机构的指标如果是25cm,那么,披露给社会公众的指标也应该是25cm,我们允许误差,但不允许失误。有的人说,失误就是过失,过失又不犯法,这明显不懂法,在我国有些犯罪不需要故意,只要过失即可,会计执业中就有类似的高危罪名。

5、数据价值的实现才是指引的精髓

银行业金融机构,应当在风险管理、业务经营、内控中加强数据应用,实现价值驱动,提高管理精细化水平,发挥数据价值。

运用大数据,对于传统银行的风控管理而言,是一大进步。如果更精细地鉴别和使用数据,更科学地分析,更有效地利用,可大大提高银行的风控能力,对于全球系统重要性银行要遵循更高的标准。

做好风险管理,还要注意风险监控,一个人开车就要一个人提醒。

在银行平日工作中,注意监测、评估、报告和控制风险,是一种“双保险”的办法。同时,在数据加总能力、风险报告、风险定价、重大收购、资产剥离、新产品评估、客户营销、业务流程优化、业务创新、内控评价等方面,进行规范。

最后,监管将采取持续监管的方式,具体通过现场监管与非现场监管来监督;同时,审计机构要进行数据治理审计,及时出具报告;对不符合指引要求的机构,责令整改,将公司治理评价结果或监管评级挂钩等。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理:如何入门

    数据治理:如何入门

    无论是在零售业,银行业还是医疗保健业,如今最精明的商业领袖都将数据列入其顶级企业资产 - 与产品,设备,设施和员工一样有价值 - 并且他……查看详情

    发布时间:2018.11.23来源:Henry DeVries浏览量:8次

  • 数据治理委员会:指导原则

    数据治理委员会:指导原则

    数据所有权 指定义与特定数据集相关的各种责任级别。讨论谁负责特定的数据任务已经使我们机构的数据维护和准确性变得更加简单。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:3次

  • 数据治理知识:怎么判断数据质量是否健康?

    数据治理知识:怎么判断数据质量是否健康?

    从数据质量检查开始:导出数据的子集并通过亿信华辰数据质量管理平台运行它 。这项软件服务可快速评估您数据的有效性、完整性和唯一性。……查看详情

    发布时间:2021.06.10来源:亿信华辰数据治理知识库浏览量:10次

  • 数据资产管理方案之如何让数据化为价值

    数据资产管理方案之如何让数据化为价值

    数据是资产的概念已经成为行业共识。然而现实中,对数据资产的管理和应用往往还处于摸索阶段,数据资产管理面临诸多挑战。主要分为以下三点:1、……查看详情

    发布时间:2020.08.14来源:知乎浏览量:15次

  • 银行数据治理方法浅析

    银行数据治理方法浅析

    数据是银行最核心的资产,数据治理能成就银行的未来。数据治理是一个新兴的并且不断演进的概念,涉及数据质量、数据管理、数据政策、商业过程管理……查看详情

    发布时间:2019.02.21来源:知乎浏览量:5次

  • 大数据时代,用户不能成为“透明人”!

    大数据时代,用户不能成为“透明人”!

    移动互联网时代,智能手机如同人的体外器官,而手机上安装的APP就像组成细胞。可以说,过好移动生活,首先从用好智能手机的APP开始。……查看详情

    发布时间:2019.04.04来源:大数据浏览量:6次

  • 数据治理和数据管理、数据管控是什么关系

    数据治理和数据管理、数据管控是什么关系

    如果要用一个模型来描述数据治理、数据管理、数据管控这三个名词,那应该是一个“金字塔”模型。……查看详情

    发布时间:2021.04.12来源:亿信数据治理研究院浏览量:11次

  • 来自园艺的5个数据治理课程

    来自园艺的5个数据治理课程

    所有这些数据增长和收购挑战都要求我们重新考虑我们的数据治理策略。我们根本没有确保正确管理和使用数据所需的可见性。我们的首要任务是消除风险……查看详情

    发布时间:2018.12.04来源:Debi Tadd浏览量:5次

  • 企业数字化转型需重视哪些问题

    企业数字化转型需重视哪些问题

    大数据可以帮助企业制定可行的战略规划,获取客户洞察力,支持客户购买行为,建立新的商业模式,从而赢得竞争优势。成功的企业数字案例显然有自己……查看详情

    发布时间:2019.11.07来源:知乎浏览量:2次

  • 2018年十大数据泄露安全事件盘点

    2018年十大数据泄露安全事件盘点

    数据安全任重道远,如何在互联网发展的大潮下同时确保信息安全,已经成为全世界各行业普遍关注的焦点问题。2018年以来,数据泄漏事故、勒索软……查看详情

    发布时间:2019.01.10来源:浏览量:2次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议