数据质量管理包括什么方面

发布时间:2019.11.07来源:知乎浏览量:231次标签:数据治理

数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

一个战略性和系统性的方法能帮助企业正确研究企业的数据质量项目,业务部门与 IT 部门的相关人员将各自具有明确角色和责任,配备正确的技术和工具,以应对数据质量控制的挑战。



扩展资料控制方法:

1、探查数据内容、结构和异常
第一步是探查数据以发现和评估数据的内容、结构和异常。通过探查,可以识别数据的优势和弱势,帮助企业确定项目计划。一个关键目标就是明确指出数据错误和问题,例如将会给业务流程带来威胁的不一致和冗余。

2、建立数据质量度量并明确目标
EsDataClean的数据质量解决方案为业务人员和IT人员提供了一个共同的平台建立和完善度量标准,用户可以在数据质量记分卡中跟踪度量标准的达标情况,并通过电子邮件发送URL来与相关人员随时进行共享。

3、设计和实施数据质量业务规则
明确企业的数据质量规则,即,可重复使用的业务逻辑,管理如何清洗数据和解析用于支持目标应用字段和数据。业务部门和IT部门通过使用基于角色的功能,一同设计、测试、完善和实施数据质量业务规则,以达成最好的结果。

4、将数据质量规则构建到数据集成过程中
EsDataClean支持普遍深入的数据质量控制,使用户可以从扩展型企业中的任何位置跨任何数量的应用程序、在一个基于服务的架构中作为一项服务来执行业务规则。
数据质量服务由可集中管理、独立于应用程序并可重复使用的业务规则构成,可用来执行探查、清洗、标准化、名称与地址匹配以及监测。

5、检查异常并完善规则
在执行数据质量流程后,大多数记录将会被清洗和标准化,并达到企业所设定的数据质量目标。然而,无可避免,仍会存在一些没有被清洗的劣质数据,此时则需要完善控制数据质量的业务规则。EsDataClean可捕获和突显数据质量异常和异常值,以便更进一步的探查和分析。

6、对照目标,监测数据质量
数据质量控制不应为一次性的“边设边忘”活动。相对目标和在整个业务应用中持续监测和管理数据质量对于保持和改进高水平的数据质量性能而言是至关重要的。

EsDataClean数据质量管理平台,智能纠错减少数据异常,让数据清澈如水,智能高效的数据超级医生.


图形化操作界面,全程零编码
采用全导航交互式设计界面,技术门槛低。不管是规则定义还是流程管理都无需编写sql或代码,通过图形化界面进行简单配置即可,使得非技术用户也能对定义过程和定义结果一目了然。

一站式轻松搞定质检全过程
亿信数据质量管理平台(EsDataClean)提供从标准定义、质量监控、绩效评估、质量分析、质量报告、重大问题及时告警、流程整改发起、系统管理等数据质量管理全过程的功能。

智能推进问题数据整改
智能数据质量检查调度;通过事先定义好的规则、调度时间、工作流程,自动完成数据的质量检查,极大的减少人力的投入和过程干预,提升效率,减少误差。
重大问题及时告警;对质量检查的结果提供多方式(界面、邮件、短信)告警,让用户及时了解到系统检查结果,避免重大问题的延误。
一键生成质量报告和评估结果;系统通过数理统计、数据分析等技术,根据事先定义好的模板,自动生成质量报告和绩效考评结果。

领先业界的数据质量评估体系
亿信数据质量管理平台(EsDataClean)包含丰富的质量评价方法,并且易于扩展。系统支持数十种质量评价算法技术,满足业务系统运行、数据中心建设、数据治理过程中各类规则的定义,并可实现跨数据源的对比分析;支持通过XML扩展,可完全适应企业未来的数据质量管理需求的变化。

全方位的数据体检报告
多维度质量分析报表,辅助用户对问题数据进行质量分析,以便用户进行有针对性的质量改进;
内置丰富的统计分析报告及多种质检结果主题,同时支持自定义扩展符合行业需求的质检结果主题,满足各行业用户的个性化需求。
多角度质量绩效评分,EsDataClean支持用户定义评分依据和权重,并可按照字段、表、规则类别、关键字等粒度生成质量评估结果。

卓越的质检性能
数据质量管理平台具有出色的跨平台运行能力,兼容多种操作系统,支持所有符合JDBC2.0规范的数据库。系统的质量规则检查支持多线程并发执行,百万级数据20条规则的质量检查只需2分30秒即可完成。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 增强数据管理吸引了更多企业的兴趣

    增强数据管理吸引了更多企业的兴趣

    “我认为数据专业人员确实希望机器处理繁琐且计算密集的东西,”Henschen说。“有很多工作要做,让机器处理他们最擅长的事情,这将使人类……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:120次

  • 数字化时代的大数据治理应该怎么做呢?

    数字化时代的大数据治理应该怎么做呢?

    随着时代的发展,各个企业收集数据的渠道越来越多样化,也有越来越多的企业开始应用大数据来创造价值,为了合理有效的挖掘数据资源来源的价值,首……查看详情

    发布时间:2019.07.17来源:知乎浏览量:155次

  • 一分钟了解企业主数据系统建设,成功化数据为价值。

    一分钟了解企业主数据系统建设,成功化数据为价值。

    “在数据治理的相关资料中,提到了一个概念,叫‘主数据’,究竟什么是主数据,它的收益又在哪?”之所以具有代表性,是因为这是一个典型的企业人……查看详情

    发布时间:2020.08.28来源:知乎浏览量:149次

  • 11个顶级数据治理平台

    11个顶级数据治理平台

    虽然许多组织更加重视他们的数据治理计划,但“大多数企业都会在企业数据治理方面遇到困难,而他们最初只关注客户,供应商或产品,”MDM研究所……查看详情

    发布时间:2018.11.16来源:David Weldon浏览量:641次

  • 企业数据质量是数字化时代企业的重要资产

    企业数据质量是数字化时代企业的重要资产

    大数据的概念正在进一步渗透到各个行业与领域当中,随着企业业务增长和规模扩大,以及伴随着信息技术和相关基础设施的不断完善,在短短的几年内,……查看详情

    发布时间:2020.01.10来源:知乎浏览量:146次

  • 政务数据治理平台案例:佛山某大区政务服务数据管理局

    政务数据治理平台案例:佛山某大区政务服务数据管理局

    睿治数据治理平台,应用于政务数据治理领域:通过元数据采集业务数据元数据信息,协助数统局梳理政务系统,了解数据含义。通过数据标准,定义政务……查看详情

    发布时间:2021.04.25来源:亿信华辰浏览量:159次

  • 什么是数据集成?

    什么是数据集成?

    数据集成是将来自不同来源的数据组合到统一视图中的过程:从摄取,清理,映射和转换到目标接收器,最后使数据对访问它的人更具可操作性和价值。 ……查看详情

    发布时间:2018.12.20来源:数据治理浏览量:115次

  • 数据治理之“术”金融业如何做好数据治理工作

    数据治理之“术”金融业如何做好数据治理工作

    数据治理之“术”金融业如何做好数据治理工作就如何做好数据治理工作,可参考以下四点意见。……查看详情

    发布时间:2019.12.12来源:知乎浏览量:123次

  • 数据治理准备的支柱:企业数据管理方法

    数据治理准备的支柱:企业数据管理方法

    Facebook的数据问题继续成为头条新闻的主导,并进一步凸显了企业范围内数据资产视图的重要性。备受瞩目的案件与其他着名的数据丑闻有所不……查看详情

    发布时间:2019.01.24来源:亿信华辰浏览量:159次

  • 区块链与数据治理

    区块链与数据治理

    大数据时代,数据源源不断产生并自主汇聚至多方数据收集者,数据已经成为企业间竞争的关键和影响国家竞争力的重要因素,由此数据治理成为企业治理……查看详情

    发布时间:2020.06.24来源:知乎浏览量:150次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议