数据质量管理趋势

发布时间:2019.11.15来源:知乎浏览量:135次标签:数据治理

关注数据质量的同时,还要进一步关注覆盖范围更加广泛、涉及层面更加深入的信息质量,这也是数据管理需要思考的问题。苏联数学家Kolmogorov对信息的定义是:“信息是在给内数据集内的对客观事物的语义描述”。进一步信息又可分为物理信息和语义信息两类,其中物理层面的信息反映基础的数据结构;语义信息属于进阶有含义的语义数据结构,反映人类的视角。

目前数据质量管理方法中对于语义信息的关注较少,更多的是关注常规物理信息,以及可以转化为物理信息的语义信息,其原因在于信息质量更为复杂。错误的数据能导致错误的信息,物理信息容易度量,语义信息相对较难用简单的规则度量。在一个数据挖掘应用中,错误的语义信息会来源于知识发现过程中的数据集选择、模型选择、参数选择、验证方式选择,基本上所有的过程都需要加入人为的理解因素。从传统软件开发质量保障角度,也需要对语义相关的信息质量进行考虑,确保数据价值的不被曲解或者损失。在移动计算、物联网、大数据等新理念趋势下,信息质量面临的问题更加值得关注。

从整体数据管理角度来看,语义信息的质量保障依赖于整体数据管理水平,数据治理、元数据、数据标准等活动都会发挥作用。数据治理定义数据质量相关角色、职责,元数据、数据标准为一致性的语义理解提供参考作用。近年来软件即服务(SaaS)和云计算应用(Cloud-Based)趋势日益明显,信息技术新趋势的影响也促使数据质量管理从独立的闭环机制拓展到完整的宏观数据质量管理体系。银监会于2011年发布银行监管统计数据质量管理良好标准,该标准以数据质量为目标涵盖组织、制度、系统和流程建设,是银行开展全面数据质量管理的有益参考。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 浅谈企业数据治理的实践

    浅谈企业数据治理的实践

    在大数据时代,数据治理是所有的拥有大量数据的公司的巨大的挑战。没有数据,企业缺乏用于做决策的数据的支持。可是有了越来越多的数据,很多情况……查看详情

    发布时间:2019.09.04来源:知乎浏览量:153次

  • 企业为什么要进行数据资产管理?

    企业为什么要进行数据资产管理?

    ​随着大数据时代的来临,对数据的重视提到了前所未有的高度,“数据即资产”已经被广泛认可。数据就像企业的根基,是各企业尚待发掘的财富,即将……查看详情

    发布时间:2022.05.27来源:小亿浏览量:804次

  • 管理数据与拥有数据一样重要:关注数据治理和数据质量

    管理数据与拥有数据一样重要:关注数据治理和数据质量

    在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟……查看详情

    发布时间:2019.09.20来源:知乎浏览量:165次

  • 数据治理及其在激励数据中的作用

    数据治理及其在激励数据中的作用

    数据治理是一种包罗万象的数据工程和数据管理概念,组织采用该概念来确保整个数据生命周期中的高质量数据。此概念基于四个概念 - 可用性,适用……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:148次

  • 数据治理如何解决数据多、杂、乱、差问题?

    数据治理如何解决数据多、杂、乱、差问题?

    许多大数据公司在过去一段时间都得到了较好的发展,但由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理……查看详情

    发布时间:2022.02.21来源:小亿浏览量:317次

  • 数据管理的演进:从响应业务到创造业务

    数据管理的演进:从响应业务到创造业务

    企业对数据的利用有三个阶段:响应运营,响应业务,创造业务。数据中台解决的是响应业务的问题,第三阶段“创造业务”,则需要AI中台。……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:111次

  • 亿信华辰亮相2018智慧校园广州论坛 共探教育数据治理

    亿信华辰亮相2018智慧校园广州论坛 共探教育数据治理

    近20位行业大咖和领导,来自全国451所学校的1386位教育信息化专家、院校领导及企业负责人参与了此次大会,针对服务治理、数据治理、高等……查看详情

    发布时间:2018.10.15来源:亿信华辰浏览量:90次

  • 理解数据治理

    理解数据治理

    专注于商业智能(bi)市场,深入了解组织在数据管理策略方面所面临的一些共同挑战。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:118次

  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:126次

  • 数据治理:一些美好的开始

    数据治理:一些美好的开始

    数据治理增强了业务参与,共享理解,关注和协调,将日益脱节的数据环境结合在一起,并在许多EDM计划中提供数据值优化。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:129次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议