2019年十大数据治理预测

发布时间:2018.12.19来源:亿信华辰浏览量:124次标签:数据治理

那么未来一年中数据治理的前景如何?我们正在为2019年做出以下数据治理预测:

2019年十大数据治理预测

1. GDPR对美国的监管:

GDPR已经确定了标准,并将成为跨地域事实上的标准。以加利福尼亚消费者隐私法案(CCPA)于2020年生效为例,以加利福尼亚州为例。即使像苹果,谷歌,亚马逊和Twitter这样的大型科技公司也在鼓励更多的监管,部分原因是因为他们意识到那些不提供数据隐私的公司在最前沿将感受到政府和消费者的愤怒。

2. GDPR罚款即将来临,它们将是巨大的:

也许2019年最安全的数据治理预测之一就是即将对GDPR执法施加压力。这些规定并未用于展示,因此GDPR的免费连胜可能会很快结束...... 这些头条新闻将类似于美国医疗保健行业违反健康信息可移植性隐私法(HIPAA)的数据泄露事件或医院。很多公司都会有一个“糟糕的”时刻,并意识到他们还有很多工作要做,以使他们的合规房屋井井有条。

3.数据政策作为消费者购买标准:

“数据创伤”的威胁将继续推动高管中企业数据的可见性。他们如何回应将是他们在将数据转化为真正的企业资产方面取得长期成功的关键。我们将开始看到保持反应性和防御性立场(避免疼痛)的组织与利用这种负面驱动因素的组织之间的明确划分,以提高整个企业的整体数据可见性和流畅性,同时关注机会启用。后者将推动真正的数据驱动实体的出现,而不是那些继续试图堵塞船上漏洞的实体。

4. CDO将在组织内部发挥更好的作用:

我们将看到首席数据官(CDO)的角色从CIO的中尉升级到在CIO,CMO和首席财务官旁边的桌子上占据一席之地。这将为他们提供创建可持续愿景和数据路线图所需的果汁。到目前为止,对CDO合格的角色和责任,职责和背景的性质缺乏共识。随着数据对于组织从合规性和业务角度的成功变得越来越重要,CDO的角色将变得更加明确。

5.数据操作(DataOps)获得牵引力/将完全优化:

就像DevOps在过去十年中的表现一样,2019年将会看到类似DataOps的推动。数据不再仅仅是IT问题。随着组织变得数据驱动并充斥着来自多个数据源(AI,IOT,ML等)的大量数据,组织需要更好地处理数据质量并专注于数据管理流程和实践。DataOps将使组织能够更好地使其数据民主化,并确保所有业务利益相关方协同工作,以提供高质量的数据驱动洞察。


6.业务流程将从后台迁移到中心阶段:

业务流程管理将走出后台,成为数字化转型的关键组成部分。组织建模,构建和测试自动化业务流程的能力是游戏改变者。企业可以清晰地定义,映射和分析工作流程并构建模型以推动流程改进,并识别易受最大安全性,合规性或其他风险影响的业务实践,以及最需要控制以减少风险的方法。

7.改善坏的AI / ML数据:

人工智能(AI)和机器学习(ML)是数据的消费者。使用错误数据训练AI和ML应用程序的风险最初将推动数据治理的需要,以正确管理训练数据集。一旦经过培训,他们生成的数据应该是明确的,一致的和高质量的。为了保证目的,需要不断地管理数据。

8.管理来自边缘的数据:

边缘计算将继续占据上风。虽然数据速度正在推动其采用,但组织还需要查看,管理和保护这些数据并将其带入自动化管道。物联网(IoT)是关于通常具有不透明数据结构的新数据源(设备数据)。这些数据通常与其他企业数据源集成和聚合,需要像任何其他数据一样进行管理。挑战在于记录所有不同的设备管理信息库(MIBS)并将它们映射到数据湖或集成中心。

9.没有良好数据收集的组织注定要失败:

研究表明,数据科学家和分析师花费80%的时间准备使用数据,只有20%的时间实际分析它的商业价值。如果没有自动数据收集和从所有 企业源(不仅仅是那些方便访问的数据源)中提取数据,那么通过管道传输的数据将不是最高质量和最“新鲜”的数据。结果将是错误的情报,为企业带来潜在的灾难性决策。

10.数据治理演变为数据情报:

像GDPR这样的法规正在推动大多数大型企业应对数据挑战。但数据治理不仅仅是合规性。“同类最佳”企业正在研究如何将其数据用作竞争优势。这些组织正在将其数据治理实践发展为数据智能 - 将数据管理和数据治理生命周期的所有部分连接起来,以创建可操作的洞察力。数据智能可以帮助改善客户体验并实现产品和服务的创新。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据指标体系和数据治理的管理

    数据指标体系和数据治理的管理

    我们提到过为什么要搭建指标体系,相信大家在看数据相关招聘岗位简介的时候,也经常看到有关搭建指标体系的要求,因此这里简单的给出两点做指标体……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:114次

  • 理解数据治理

    理解数据治理

    专注于商业智能(bi)市场,深入了解组织在数据管理策略方面所面临的一些共同挑战。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:94次

  • 大数据必备知识:数据的分类方式

    大数据必备知识:数据的分类方式

    数据分类在收集、处理和应用数据过程中非常重要。数据的分类方式很多,每种方式都有特别的作用。数据工作中不同角色往往需要理解和掌握不同的分类……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:93次

  • 关于数据治理的十件事

    关于数据治理的十件事

    数据治理是我们现在遇到的众多热门词汇之一。有人可能会说这是炒作,但我不这么认为。出于许多好的理由,这是我们的首要考虑,其中一些我们在下面……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:130次

  • 为您的数据治理策略选择一个更聪明的比喻

    为您的数据治理策略选择一个更聪明的比喻

    组织希望“数据驱动”,其要点是他们希望人们使用数据来做出决策。领导们知道太多的人组成的东西。每一……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:134次

  • 浅谈数据质量管理

    浅谈数据质量管理

    随着互联网及数字化技术的飞速发展,我们生活在一个数字化转型的时代,各种数字化正在实实在在的改变着企业的日常运营,以及我们每个人的衣食住行……查看详情

    发布时间:2019.07.17来源:知乎浏览量:96次

  • 国内大数据治理管理平台介绍

    国内大数据治理管理平台介绍

    数据治理的定义是对数据资产管理行使权力和控制的活动集合。其最终目的是挖掘数据价值,推动业务发展,实现盈利。……查看详情

    发布时间:2019.09.12来源:知乎浏览量:271次

  • 通过数据治理策略推动业务转型

    通过数据治理策略推动业务转型

    围绕数据制定战略是成功实现数字化转型的关键。除了流行语 - 组织需要了解他们试图通过数字化转型实现什么,以及它如何在行业和竞争优势中发挥……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:77次

  • 5可以通过数据治理解决的挑战-使用数据治理克服常见的业务障碍

    5可以通过数据治理解决的挑战-使用数据治理克服常见的业务障碍

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2018.11.13来源:CHRIS REED浏览量:52次

  • 大数据时代不能没有数据治理

    大数据时代不能没有数据治理

    第一个提出大数据时代到来的是全球知名咨询公司麦肯锡,现如今大数据存在于各个行业,受到了人们的重视。现在社会科技告诉发展,信息流通快,使得……查看详情

    发布时间:2019.08.13来源:知乎浏览量:82次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议