数据治理计划阶段

发布时间:2019.03.29来源:亿信华辰浏览量:72次标签:数据治理


数据治理生命周期
所有程序都有生命周期。数据治理生命周期有七个阶段:

      1. 制定价值陈述
      2. 准备路线图
      3. 计划和资金
      4. 设计
      5. 部署
      6. 治理
      7. 监控,测量,报告。

请注意,数据治理并不是从程序设计开始的! 

      • 在你开始决定谁去哪个委员会之前,你应该清楚你的计划的价值陈述。
      • 您应该制定一个与利益相关者分享的路线图。
      • 这些利益相关者希望在他们决定支持之前了解您的计划的WHO / WHAT / WHEN / WHERE / WHY / HOW,因此您需要预测他们的问题。您需要初步答案,即使它们只是在您进行实际程序设计之前的假设

当您执行获得支持和资金所需的活动时,请记住您的计划可能计划解决多个重点领域。应该使用生命周期的七个步骤来介绍每个新的努力。即使是特定的治理主导项目,例如创建一组数据标准,也希望遵循数据治理生命周期步骤。

关于数据治理生命周期最后阶段的说明:每当您考虑一系列新活动时,您都希望预测利益相关方对监控工作,衡量成功和报告状态的期望。您提供满足利益相关者的行业标准指标的能力可能是长期痛苦的计划活动与成为常规的计划活动之间的差异。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 不是专业数据分析师的你,该如何科学地看待大数据呢?

    不是专业数据分析师的你,该如何科学地看待大数据呢?

    似乎很多创业人,都喜欢讲一些概念化的东西。例如前两年的互联网+,例如后来的大数据,又例如最近的区块链…………查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:39次

  • 外部管理数据集的政府数据可靠性

    外部管理数据集的政府数据可靠性

    当我在退伍军人事务部工作时,我联系了许多人 - 联邦政府以外的人 - 他们希望在联邦政府开放数据工作时帮助清理,使用和改进公共数据集。当……查看详情

    发布时间:2019.03.08来源:亿信华辰浏览量:52次

  • 完善和高效的数据交换管理平台

    完善和高效的数据交换管理平台

    EsDataExchange是亿信华辰公司推出的一款解决企业和政府部门数据交换管理的成熟产品,该平台是亿信华辰公司自主研发的具有独立知识……查看详情

    发布时间:2020.04.23来源:知乎浏览量:56次

  • 建立成功的数据治理战略

    建立成功的数据治理战略

    组织当前正在努力解决的数据分析的核心要素之一是数据治理。如果组织没有花时间构建和实施治理策略,那么组织可以做正确的事情并且仍然想知道为什……查看详情

    发布时间:2018.12.14来源:数据治理浏览量:72次

  • 通用数据治理平台的功能模块

    通用数据治理平台的功能模块

    随着互联网与大数据技术的飞速发展,大数据已经融入到了各行各业。数据治理非常重要,已经逐渐成为了政府、企业进行智能化决策的重要手段。数据治……查看详情

    发布时间:2022.02.23来源:浏览量:320次

  • 大数据治理的五个核心要素

    大数据治理的五个核心要素

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:53次

  • 中小银行数据治理难点在哪儿?

    中小银行数据治理难点在哪儿?

    银行数字化转型是银行业伴随金融科技发展的必然趋势,而数据治理是实现银行数字化转型的基础。……查看详情

    发布时间:2019.12.13来源:CSDN浏览量:79次

  • 提高企业数据质量能做些什么?

    提高企业数据质量能做些什么?

    如今,我们生活在数据时代,各种数字化正在实实在在的改变着企业的日常运营,我们的生活、工作、学习,现在都离不开数据,对于企业来说,数据就是……查看详情

    发布时间:2019.11.01来源:知乎浏览量:58次

  • 数栈:为数据治理而生

    数栈:为数据治理而生

    2018年5月21日,中国银保监会印发《银行业金融机构数据治理指引的通知》(银保监发〔2018〕22号),新规从征求意见到正式稿落地仅仅……查看详情

    发布时间:2019.01.04来源:NinGoo浏览量:89次

  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:70次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议