3点告诉你如何正确实现数据治理

发布时间:2021.05.20来源:亿信数据治理知识库浏览量:67次标签:数据治理

2021年来,越来越多的企业向我们求助,希望让他们实现数据转型,实现真正意义上的“数据驱动”。他们希望改善决策,将流程转变为更具量化性,并减少基于直觉和经验的决策。这是一个值得实现的目标,但要比将数据可视化仪表板放在管理人员面前要复杂得多。


数据驱动需要的不只是的新工具的出现。它需要对数据质量进行投资,以改变有关数据捕获系统的设计和使用方式的行为。它还需要投资于跨团队协作以及为核心指标建立一致的企业范围定义,以确保每个人都在同一标准上共同服务于数据治理。对数据治理这些支柱的投资也为更高价值奠定了基础高级分析活动,相较于机器学习和自动化,数据治理的增值更为明显。


一、数据质量必须优先


资料品质是所有基于分析的活动的基础。当组织寻求基于数据做出更多决策时,如果构成基础的数据不正确,不完整或不一致,则存在可能会错误地做出决策的现实风险。


众所周知,企业应用程序的用户体验和捕获的数据质量很差。用户体验差的系统使好心的用户难以有效地输入数据。激励系统和KPI常常会减少花费在数据收集上的时间。客户服务代表会获得快速解决票证的奖励,因此他们可以从一张票证跳到另一张票证,而无需“浪费时间”有效地记录解决方案。销售人员受激励于完成交易,而不是准确而完整地捕获潜在客户的细节或流程进展或销售细节的更新。 


激励主要任务后,捕获的数据质量就会下降。这实际上使许多具有实际价值的指标不可用。如果财务可以使用CRM中对渠道机会的准确估计来对收入进行预测,或者市场营销不仅可以根据潜在客户来判断其营销活动的有效性,还可以判断其转化的可能性,那么这将有多大。


激励数据质量的提示:


1.将数据质量纳入绩效指标(例如,向未能有效捕获有关销售流程数据的销售人员设置上限佣金)

2.确保数据质量是管理人员的KPI

3.确保高质量数据捕获是新系统实施的非功能要求(NFR)

4.定期(例如,每季度)审核数据质量


二、数据需要一致和清晰的解释


对于许多人来说,“数据”一词与“事实”同义,忘记了数据需要正确解释上下文。上下文因部门,业务部门,团队之间甚至团队内部而异。上下文的差异通常会导致对事物的计算方式的不同定义。例如,当市场营销谈论“总销售额”时:


1.它是指购买(交易)的数量还是这些交易的价值?

2.是否包括退回的物品?在不同时期购买和退回商品时该如何处理?

3.它包括运输费用吗?

4.它包括营业税吗?

5.用外币进行销售时,汇率如何计算?

6.它包括促销中赠予的物品吗?


许多依靠“销售总额”的业务用户可能实际上并不知道这些问题的答案,这很可能会影响他们的决策能力。此外,尽管市场营销人员可能会对其“总销售额”的定义充满信心,但财务部门可能会使用微妙的定义,并再次使用不同的定义。整个组织中这种不同的环境使协作变得更加困难,并且可能使高管团队挠头。


PowerBI和Tableau等分析平台将数据交到员工手中,从而使整个组织中的数据民主化。它们还加剧了指标不一致的问题。突然之间,从市场营销中的汤姆(Tom)可以很容易地从财务仪表板上查看艾米(Amy),这表明她的“销售总额”数字与他的不同。这些问题可以而且确实会削弱对这些平台的信任,损害它们的采用并降低其增值能力。


一致指标的提示:


1.在所有组织单位的同意下,需要在整个组织中统一定义和记录度量标准

2.出现在多个仪表板上的任何指标应在同一期间具有相同的值

3.分析团队应审查新的和更改的仪表板,以获取合并报告并检查其一致性的机会

4.度量计算方法的任何更改均应广泛传达

5.指标定义应易于在显示它们的任何平台中查看

6.限制最终用户自定义度量标准计算方式的能力

7.定期查看用户创建的仪表板,以确保指标被一致标记


三、数据治理是关于人员和流程的,而不是技术


强大的数据治理框架应同时关注数据质量、一致性和清晰度。数据治理的这些支柱牢固地扎根于人员和流程,而不是技术。根本的挑战在于改变他们的行为,无论是组织如何通过激励措施优先确定数据质量,还是让他们切实意识到数据治理的重要性。现在越来越多的企业认识到数据治理的意义及价值,应重视数据治理项目中的人员教育,而不是在团队目标及认知混乱的情况下就开始项目的执行。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 从数据治理看医疗大数据的发展

    从数据治理看医疗大数据的发展

    《从数据治理看医疗大数据的发展》主要分享医疗大数据中数据治理的重要性,并结合具体案例来讲述大数据治理的框架和应用心得。……查看详情

    发布时间:2019.02.25来源:网络大数据浏览量:42次

  • 企业数据质量管理的核心要素和技术原则

    企业数据质量管理的核心要素和技术原则

    “十三五”,规划提出了国家的大数据战略,指出了企业实现以数字化驱动业务发展,实现数据开放共享,创新业务发展的新思路。现阶段大中型企业已经……查看详情

    发布时间:2020.01.09来源:CSDN浏览量:50次

  • 敏捷方法如何帮助解决您的数据问题

    敏捷方法如何帮助解决您的数据问题

    无论哪种方式,您都必须像软件开发人员一样思考,并确保您拥有正确的思维方式,技能组合和工具集,以保持数据掌握的灵活性。……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:38次

  • 数据治理知识:怎么判断数据质量是否健康?

    数据治理知识:怎么判断数据质量是否健康?

    从数据质量检查开始:导出数据的子集并通过亿信华辰数据质量管理平台运行它 。这项软件服务可快速评估您数据的有效性、完整性和唯一性。……查看详情

    发布时间:2021.06.10来源:亿信华辰数据治理知识库浏览量:58次

  • 数据治理运作:差距

    数据治理运作:差距

    十年前,顾问必须提高认识并教育客户治理;突出监管风险,合规要求,处罚等。这更像是出售保险产品。今天,全球组织都了解数据治理(DG)是什么……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:48次

  • 2018年中国大数据交易产业十大事件

    2018年中国大数据交易产业十大事件

    凡是过去,皆为序章。中国大数据交易产业2018年大事频出,国家大数据(贵州)综合试验区“大数据资源流通”取得新进展,2018第四届中国(……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:49次

  • 3点告诉你如何正确实现数据治理

    3点告诉你如何正确实现数据治理

    数据驱动需要的不只是的新工具的出现。它需要对数据质量进行投资,以改变有关数据捕获系统的设计和使用方式的行为。……查看详情

    发布时间:2021.05.20来源:亿信数据治理知识库浏览量:67次

  • 什么是数据治理以及数据治理架构

    什么是数据治理以及数据治理架构

    数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的……查看详情

    发布时间:2018.12.06来源:数据治理浏览量:43次

  • 数据治理能力正在成为互联网+时代城市竞争新优势

    数据治理能力正在成为互联网+时代城市竞争新优势

    新型智慧城市的四个新视角解读 城市服务要以人为中心,但是城市的服务不但以人为中心,还是要做到数据,由于数据为核心,没有好的数据,就没有……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:53次

  • 国内成熟的数据治理解决方案提供商

    国内成熟的数据治理解决方案提供商

    如今,数据已成为企业的货币,但管理数据不当可能会很快失去控制。麻省理工学院最近的一项研究发现,对于一些企业来说,大数据正在变成糟糕的数据……查看详情

    发布时间:2019.11.25来源:CSDN浏览量:76次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议