2018 数据管理成熟度技术曲线:DataOps、dbPaaS、ML

发布时间:2019.03.05来源:亿信华辰浏览量:2次标签:数据治理

数据运维(DataOps)、私有云数据库平台即服务(dbPaaS)和具有机器学习(ML)功能的数据管理在2018年Gartner数据管理成熟度曲线中首次亮相。


2018年


2017年

Gartner数据管理成熟度曲线帮助首席信息官(CIO)、首席数据官(CDO)及其他数据和分析领导人了解他们在评估的数据管理技术具有的成熟度,以便在其所在的企业提供一个连贯完整的数据管理生态系统。

Gartner的副总裁兼杰出分析师唐纳德•费恩伯格(Donald Feinberg)说:“我们只看到三项技术进入创新触发点(Innovation trigger)阶段,因为在数据管理领域,人们不大关注创新,更加关注大规模执行,这与我们在业界看到的现状相一致。”

创新触发点是成熟度曲线的第一个阶段,是指某个重大突破、公开演示、产品发布或其他活动引起了媒体和业界的浓厚兴趣。

此外,越来越多的供应商正改而采用云优先的交付模式,这种模式迅速加快几项技术的发展,比如dbPaaS和集成平台即服务(iPaaS)。实际上,dbPaaS距离主流企业采用还不到两年的时间。在所有数据管理技术中,内存中处理功能也变得更加广泛和普及。费恩伯格先生补充道:“那些与其说是技术,还不如说是交付平台,它们会迅速进入到实质生产的高峰期。”

2018年创新触发点

DataOps是一种协作数据管理实践,专注于改善企业组织中数据管理者和消费者之间数据流的传输、集成和自动化。与DevOps非常相似,DataOps不是一个严格的教条,而是一种基于原则的实践,它影响着如何提供和更新数据以满足企业数据消费者的需求。

Gartner研究副总裁尼克•霍德克(Nick Heudecker)说:“DataOps是一种没有任何标准或框架的新实践。目前,越来越多的技术提供商在谈论其产品时开始使用这个术语,我们也看到数据和分析团队在询问这个概念。眼下有炒作,DataOps会在成熟度曲线上快速上升。”

私有云dbPaaS产品将私有云数据库平台的隔离性与公共云的自助服务和可扩展性相结合。它们最近开始出现在供应商的产品组合中,在本地数据中心提供云体验。Gartner的分析师表示,企业在制定长期云战略时,私有云dbPaaS可以扮演转型技术这个角色。

Gartner研究主管亚当•朗索尔(Adam Ronthal)说:“由于安全性、监管或其他因素,私有云dbPaaS是适合无法或未准备好迁移到公共云产品的企业的一种选择。这些企业常常将现有的本地基础设施用于dbPaaS,因此会缩短被主流企业采用的时间。”

自20世纪70年代以来,基本的机器学习就已经应用于数据管理产品。如今,随着机器学习和AI库越来越触手可及,供应商们将现代版本的机器学习用于数据管理软件中的许多自我管理操作。这种解决方案不仅调整和优化产品本身的使用,还给出了新的设计、方案和查询。

费恩伯格先生解释道:“我们将具有机器学习功能的数据管理列在成熟度曲线的高峰前部分,原因是现在的许多使用场景处于初期阶段。然而,这项技术会迅速迈进。数据管理中使用机器学习的许多产品如今仅出现在云平台上,可能需要用大量数据加以训练。这些训练工作带来的改进之处将落实到本地软件,未来几年内具有机器学习功能的数据管理技术的采用率会急剧提高。”




(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 企业适用的数据标准管理平台

    企业适用的数据标准管理平台

    数据标准化的过程其实就是在数据整合平台实现数据标准,并将各个系统产生的数据通过清洗、转换加载到整合平台的数据模型中,实现数据标准化的过程……查看详情

    发布时间:2020.05.08来源:知乎浏览量:1次

  • 商业词汇表管理的六大理由对数据治理至关重要

    商业词汇表管理的六大理由对数据治理至关重要

    业务术语表对于任何数据治理策略都至关重要,但它经常被忽视。……查看详情

    发布时间:2019.01.21来源:亿信华辰浏览量:2次

  • 敏捷方法如何帮助解决您的数据问题

    敏捷方法如何帮助解决您的数据问题

    无论哪种方式,您都必须像软件开发人员一样思考,并确保您拥有正确的思维方式,技能组合和工具集,以保持数据掌握的灵活性。……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:3次

  • 不再有肮脏的数据:关于数据治理的五个提示

    不再有肮脏的数据:关于数据治理的五个提示

    确保您的数据获得和保持干净需要正确的数据治理方法。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:1次

  • 数据资产管理“管”什么

    数据资产管理“管”什么

    目前,数据资产管理已经形成了一套科学的管理架构体系,其体系架构如下图所示,主要包含9个活动职能和2个保障措施,9个活动职能指的是数据标准……查看详情

    发布时间:2020.09.11来源:知乎浏览量:7次

  • 数据治理的最佳实践

    数据治理的最佳实践

    数据治理是指确保数据在输入系统时满足精确标准和业务规则的一组流程。数据治理使企业能够控制数据资产的管理。这包括使数据适合其预期目的所需的……查看详情

    发布时间:2018.12.26来源:数据治理浏览量:0次

  • 医疗保健中数据治理的7个基本实践

    医疗保健中数据治理的7个基本实践

    数据现在是任何组织中最有价值的资产之一,尤其是医疗保健,因为我们正在转向更具分析性的行业。数据现在是任何组织中最持久的资产,超过设施,设……查看详情

    发布时间:2018.11.16来源:戴尔桑德斯浏览量:3次

  • 什么是数据治理以及数据治理架构

    什么是数据治理以及数据治理架构

    数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的……查看详情

    发布时间:2018.12.06来源:数据治理浏览量:2次

  • 数据治理对医疗保健组织来说往往是个谜

    数据治理对医疗保健组织来说往往是个谜

    数据治理对医疗保健组织来说往往是个谜。“它是什么?我该怎么做?我在哪里可以买到它?“它引起了一些想法。 数据治理是一组流程,可确保在整……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:2次

  • 数据质量—并非所有数据都是平等的

    数据质量—并非所有数据都是平等的

    数据质量是调节数据以满足业务用户特定需求的过程。准确性,完整性,一致性,及时性,唯一性和有效性是数据质量的主要衡量标准。……查看详情

    发布时间:2019.04.04来源:亿信华辰浏览量:5次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议