数据治理的最佳实践
发布时间:2018.12.26来源:数据治理浏览量:86次标签:数据治理
数据治理是指确保数据在输入系统时满足精确标准和业务规则的一组流程。数据治理使企业能够控制数据资产的管理。这包括使数据适合其预期目的所需的人员,流程和技术。
数据治理对于不同类型的组织和行业非常重要,尤其是对于那些具有法规遵从性的组织和行业,例如财务和保险。为了实现合规性,组织需要具有正式的数据管理流程来管理其整个生命周期中的数据。
虽然数据治理是许多组织关注的焦点,但并非所有实现都会返回预期的结果。以下是一些有助于避免一些经常遇到的挑战的最佳做法。
1)思考大局,但从小开始
数据治理在人员,流程和技术方面进行。虽然在规划和执行策略时记住所有三个因素非常重要,但请记住从头开始并逐步建立全局。从人员开始,遵循流程,最后以技术-每个组件构建在前者上。如果没有合适的人员,这个过程就会变得过时,没有前两个支柱的技术也会过时。首先确定并雇用合适的人员,然后定义流程,并通过采购技术完成工作。
2)构建业务案例
在实施数据治理实践时,执行支持是关键,但单靠支持不足以完全支持工作并确保成功。确定数据质量将为组织带来的好处和机会。展示将为业务带来的改进,例如增加收入,改善客户体验和提高效率。大多数人都同意,糟糕的数据质量和管理是一个问题,但知道存在问题是不够的。通过识别不足和增加的机会,您将拥有推动变革的坚实基础。
3)度量标准,指标,指标
与任何变更一样,能够衡量进度和显示成功至关重要。在执行赞助和业务案例支持之后,需要通过数据支持每一步。务必从一开始就确定开始和跟踪的测量结果。这些指标不仅会显示变更的整体进度和成功,而且还会在整个过程中作为标记和检查点,以确保流程在实践中有效(而不仅仅是理论上)。计划在纸面上看起来完美无瑕,但一旦在现场,重要的是要密切关注并允许进行调整和改进。
4)经常沟通
无论您的组织在数据治理计划的哪个阶段,都必须尽早和经常进行沟通。持续有效沟通的作用对于展示该计划的影响至关重要。利用您的赞助商和冠军成为沟通的面孔和声音。
5)使它成为一种实践-而不是一个项目
通常在进行更改时,组建一个团队来执行项目。随着数据治理计划/战略的实施,重要的是将其作为实践而不是项目。不同之处在于项目具有开始和结束日期。实践是一种融入组织的根本性变革。因此,虽然看起来很自然地想出一个吸引人的项目名称和华丽的路线图,但请记住,您正在实施的做法不仅仅是启动和完成项目。
-
企业数据治理的坑你遇到过哪些?
在这些年的数据治理实践当中有成功的经验,当然也经历过很多失败的教训,有些教训反反复复的出现…笔者一直在思考怎么避免这些问题,所以今天就跟……查看详情发布时间:2019.09.12来源:知乎浏览量:92次
-
数据资产管理实践白皮书(2.0版)
本白皮书版权属于中国信息通信研究院云计算与大数 据研究所,并受法律保护。转载、摘编或利用其它方式使用 本白皮书文字或者观点的,应注明……查看详情发布时间:2019.09.02来源:中国信息通信研究院云计算与大数据研究所浏览量:331次
-
新模型:组合投资组合管理和数据治理建议
通常,组织决定不让投资组合管理网守优先/授权所有来自治理主导的问题分析的建议。因此,创建了一个新模型,第三个存储桶。……查看详情发布时间:2019.03.29来源:亿信华辰浏览量:78次
-
目前国内外主流的主数据管理平台
企业主数据(Master Data)是用来描述企业核心业务实体的数据,比如客户、合作伙伴、员工、产品、物料单、账户等;它是具有高业务价值……查看详情发布时间:2020.04.29来源:知乎浏览量:105次
-
数据治理系列5:浅谈数据质量管理
数据质量管理是对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的数据质量问题,进行识别、度量、监控、预警等一……查看详情发布时间:2019.12.06来源:CSDN浏览量:131次
-
保险行业怎样打造数据治理闭环?
今天给大家分享一下保险行业数据治理的心得,个人认为保险行业的数据治理可以作为标杆了。根据以下3点我们来了解下保险行业是如何打造数据治理的……查看详情发布时间:2022.01.23来源:互联网浏览量:102次
-
企业数据治理的重点和难点在那里?
企业数据治理的重点和难点主要体现在以下4点:.需要企业高层支持,将数据治理工作放在企业重点工作中,保证对数据治理项目人力物力的投入,提高……查看详情发布时间:2019.09.18来源:知乎浏览量:186次