企业大数据治理的五个核心要素

发布时间:2019.08.20来源:知乎浏览量:45次标签:数据治理

当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格式也越来越多样化,包括IT系统里存储的结构化、非结构化数据,各样电子文档数据等。与此同时,企业管理者对数据的困惑也与日俱增,这些数据从哪里来?我们能相信这些数据吗?数据之间有什么样的关系?谁能理解这些数据?
数据治理
零散化存放是数据问题根源
造成上述情况最根本的原因是:数据零散化存放。大型企业在不同发展阶段,会根据业务需求建设很多内部IT支撑系统,比如ERP(企业资源计划)系统、CRM(客户服务管理)系统、财务管理系统等,这些系统的分散建设,数据割裂,造成了数据零散化存放的现状。

基于数据作分析,首先需要数据的聚合,但由于生产系统和数据的离散化,造成了数据标准、数据模型不统一,因而企业最需要做的就是对数据整合和标准化。

数据治理将为企业提供更全面更准确的数据,届时人类的大部分行为将可以被计算和预测,这种对社会成员的行为逻辑、社会事件的发展态势提前作出判断、预测和模拟,将使社会治理模式得到极大变革,从而极可能推动社会治理也由传统的人类精英经验治理向基于大数据的智能化治理转型。大数据治理的五大核心要素是:

1、明确数据治理责任,建立数据治理组织
数据出了问题,到底是谁的责任?因为数据主要是IT系统产生的,所以一直以来,解决数据问题都被认为是IT部门的职责。而IT部门也饱受其苦,数据定义和业务规则,业务部门最清楚;数据录入,业务人员负责;数据使用,业务人员是用户;数据考核,业务部门有权力……但实际上,要切实解决数据问题,开展数据治理工作,就必须先清楚一点:数据治理,是业务部门和IT部门共同的职责。

2、管理出成效,制度是保障
大数据治理需要管理和制度的有力支撑,可结合企业的现状,制定相应的管理办法、管理流程、认责体系、人员角色和岗位职责等,颁布相关的数据治理的企业规章制度等。

3、数据规范:没有规矩,不成方圆
数据规范是指对企业核心数据进行有关存在性、完整性、质量及归档的测量标准,为评估企业数据质量,并且为手动录入、设计数据加载程序、更新信息以及开发应用软件提供的约束性规则,数据规范一般包括数据标准、数据模型、业务规则、元数据、主数据和参考数据。

制定数据标准的目的是为了使业务人员、技术人员在提到同一个指标、名词、术语的时候有一致的含义。数据模型对企业运营过程中涉及的业务概念和逻辑规则进行统一定义。业务规则是一种权威性原则或指导方针,用来描述业务交互,并建立行动和数据行为结果及完整性的规则。元数据能够帮助增强数据理解,可以架起企业内业务与 IT 部门之间的桥梁。主数据用来描述参与组织业务的人员、地点和事物。参考数据是系统、应用软件、数据库、流程、报告中及交易记录中用来参考的数值集合或分类表。

4、数据治理活动,理论结合实践
数据治理活动是指为实现数据资产价值的获取、控制、保护、交付以及提升,对数据规范所做的计划、执行和监督工作,一般包括以下活动。

数据架构管理,用于定义企业数据需求,设计实现数据需求的主要蓝图,通常包括数据标准管理、数据模型管理、数据集成架构等;数据质量管理,指通过计划、实施和控制活动,运用质量管理技术度量、评估、改进和保证数据的恰当使用;元数据管理,指通过计划、实施和控制活动,以实现轻松访问高质量和整合的元数据;数据安全管理,指通过计划、制定并执行数据安全政策和措施,为数据和信息提供适当的认证、授权、访问和审计;参考数据和主数据管理,指通过计划、实施和控制活动,达到保证参考数据与主数据的一致性。

5、数据治理软件:工欲善其事,必先利其器
目前业界流行的数据治理软件,一般也称为数据资产管理产品、数据治理产品,主要包括的功能组件有元数据管理工具、数据标准管理工具、数据模型管理工具、数据质量管理工具、主数据管理工具、数据安全管理工具等。

利用数据治理软件主要解决企业不同来源数据集成过程中遇到的问题,需要数据治理软件能够为企业提供统一的元数据集成、数据标准管理、数据模型设计、数据质量稽核、数据资产目录、数据分析服务等能力。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • [数据治理方法论]6点数据治理最佳实施方法

    [数据治理方法论]6点数据治理最佳实施方法

    在寻找数据治理最佳实施方法时,您可以从其他通过数据治理项目的各种流程和模型中学到东西。尽管每个企业都不同,但仍有可借鉴之处,因此无需完全……查看详情

    发布时间:2021.05.28来源:亿信数据治理知识库浏览量:90次

  • 企业数据交换共享平台整体解决方案

    企业数据交换共享平台整体解决方案

    以一个场景来说。某个企业想要筹建数据中心,用于将各业务系统数据接入,标准化处理后将数据公布给分析系统展示。项目周期比较短,那是否有现成的……查看详情

    发布时间:2020.04.23来源:知乎浏览量:47次

  • 数据质量在数据治理中的重要意义

    数据质量在数据治理中的重要意义

    数据的质量问题从一定的角度反映出组织当中存在的一些问题,而问题的来源可能是数据流动,可能业务流程也可能源于管理问题等等,数据质量问题的分……查看详情

    发布时间:2020.01.10来源:CSDN浏览量:52次

  • 数据治理和数据发现:实现数据监管实施

    数据治理和数据发现:实现数据监管实施

    企业不断努力利用数据驱动的洞察力或竞争情报,发展组织“数据文化”的概念将获得突出地位。数据和数据分析将继续在未来的全球业务中发挥关键作用……查看详情

    发布时间:2019.09.20来源:知乎浏览量:70次

  • 一文分享主数据治理

    一文分享主数据治理

    当前大多数公司都处于部门间,系统间不通的状态,即使通了也是有很多的不一致,很难达到统一标准,数出一孔,协作流畅的程度,在资源有限的情况下……查看详情

    发布时间:2022.06.15来源:互联网浏览量:124次

  • 从数据治理看医疗大数据的发展

    从数据治理看医疗大数据的发展

    《从数据治理看医疗大数据的发展》主要分享医疗大数据中数据治理的重要性,并结合具体案例来讲述大数据治理的框架和应用心得。……查看详情

    发布时间:2019.02.25来源:网络大数据浏览量:56次

  • 创新者的破局之路:煤炭行业首个集团级数据治理项目落地

    创新者的破局之路:煤炭行业首个集团级数据治理项目落地

    工业互联网激起能源领域一池春水,新一代信息技术则是其不断发展的加速器。山东能源集团下属临沂矿业集团有限责任公司(以下简称临矿集团)率先在……查看详情

    发布时间:2021.01.29来源:头条浏览量:58次

  • 数据交换管理—企业数据上链的起点

    数据交换管理—企业数据上链的起点

    随着数据体量的增长,大数据处理、大数据应用分析的门槛逐渐提高,社会普遍开始重视数据安全和隐私。目前,数据交换共享平台已成为政府和企业在系……查看详情

    发布时间:2020.08.11来源:知乎浏览量:54次

  • 大数据时代企业数据不治理就破产-居安思危

    大数据时代企业数据不治理就破产-居安思危

    数据治理并不等同于数据管理,而只是数据管理的顶层执行层面。数据管理指规划、控制和提供数据及信息资产,发挥数据和信息资产的价值,强调在企业……查看详情

    发布时间:2020.02.21来源:知乎浏览量:71次

  • 如何有效的进行数据交换管理

    如何有效的进行数据交换管理

    在现代信息社会,政府、企事业单位相继建立了各自的信息管理系统,这些独立的系统创建之初没有统一的规划,彼此之间数据的存储环境和存储形式差异……查看详情

    发布时间:2020.04.23来源:知乎浏览量:55次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议