快速理解数据仓库、数据湖、数据工厂、数据中台

发布时间:2021.04.13来源:亿信数据治理知识库浏览量:30次标签:数据治理

数据仓库


数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策和信息的全局共享。


所谓面向主题,是指根据使用者实际需求,将不同数据源的数据在一个较高的抽象层次上做整合,所有数据都围绕某一主题来组织,例如:采购主题、生产主题、客户主题、销售主题等。


所谓集成性,是指数据仓库中存储的数据是来源于多个数据源的集成、汇总。由于原始数据来自不同的数据源,存储方式各不相同。要整合成为最终的数据集合,需要从数据源经过一系列抽取、清洗、转换的过程。


所谓相对稳定,是指数据仓库中存储的数据一般为“既成事实”的数据,也可理解为历史数据的一个快照,只做查询分析用,不允许修改。


所谓反映历史变化,是指数据仓库根据不断集成新的主题数据,反应出该主题的数据变化情况,例如:销售业绩完成情况。


数据湖


数据湖是将来自不同数据源、不同数据类型(结构化、半结构化、非结构化)的数据,以原始格式存储进行存储的系统,它按原样存储数据,而无需事先对数据进行结构化处理。有人认为数据湖是数据仓库的PLUS版,增强了数据存储的能力。而实际上,数据湖不简单是数据仓库一个技术上的升级,更重要的是数据管理思维的升级。数据仓库是需要事先定义好数据结构,然后是报表取数。而大数据的发展,数据形式越发多样化,传统数仓这种定义数据结构、取数、出表的模式,已经很难满足业务上的需求了。因此,数据湖以原始格式存储各种类型数据,以及按需进行数据结构化处理、数据清理、提供数据服务,以更加灵活的方式支持多种应用场景的能力越来越受到人们的欢迎。


数据工厂


前边提到的数据仓库和数据湖,重点侧重于数据的存储,本质上是“原材料”的存储系统,而要让数据发挥价值,就必须将这个“原材料”需要加工成用户需要的“产品”。数据工厂就是根据用户的需求,将原始数据进行加工、处理、清洗、转换、汇总等各种加工工序,生产出能够被用户直接使用的数据产品。数据工厂包含了多种数据处理的工具,以满足不同处理工序的作业需要,例如:数据源连接、数据同步、数据清洗、数据转换、数据工作流、数据目录、数据服务等等。


数据中台


数据中台就是数据湖+数据工厂的一个综合。但不同的是数据中台更注重数据应用,离业务更近,强调一个快速敏捷。


数据中台不仅关注原始数据的存储及处理加工,更侧重将数据处理过程中,常用的逻辑、算法、标签、模型进行沉淀,而形成一系列的“数据半成品”,然后根据前台业务的需要,快速生产出用户需要的“数据产品”。数据中台能力强弱,要看这个“数据半成品”积累的多少了。


在数据生产的整个链条中,对于如何筑湖、如何选址建厂、按什么工序加工、以及如何配送,这是技术部门的事情,而“数据半成品”的沉淀和积累,却不是技术能决定的了。因此,数据中台的建设更强调需求驱动、业务主导。


了解更多数据仓库、数据湖、数据工厂、数据中台、数据治理相关知识:https://www.esenruizhi.com/industry-news/data-governance.html

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 什么是主数据?

    什么是主数据?

    企业主数据(Master Data)是用来描述企业核心业务实体的数据,比如客户、合作伙伴、员工、产品、物料单、账户等;它是具有高业务价值……查看详情

    发布时间:2020.04.29来源:知乎浏览量:13次

  • 数据治理的战略转变

    数据治理的战略转变

    正在进行的思维方式和工具集战略转变正在改变主要思想家如何重新考虑他们的数据治理方法。治理的核心是变革管理。……查看详情

    发布时间:2019.03.27来源:亿信华辰浏览量:14次

  • 企业数据标准管理系统应该这样做!

    企业数据标准管理系统应该这样做!

    提到“标准”二字,我们第一时间能够想到的就是一系列的标准化文档,例如:产品设计标准、生产标准、质量检验标准、库房……查看详情

    发布时间:2020.08.31来源:CSDN浏览量:17次

  • 有效数据治理的6大原则

    有效数据治理的6大原则

    如果你常常对数据准确性而烦恼,大部分时间都用于处理数据而不是对业务进行思考分析的话,那么你需要好好对数据进行治理了。……查看详情

    发布时间:2019.10.17来源:知乎浏览量:17次

  • 数据治理与组织架构

    数据治理与组织架构

    数据治理实际反映的是组织问题、文化问题,这也是许多公司为了明确权责划分而建立数据治理委员会的原因。同时,还需要明确的程序与执行程序的计划……查看详情

    发布时间:2019.11.01来源:知乎浏览量:17次

  • 如何全面解决数据问题?看这里就全知道!

    如何全面解决数据问题?看这里就全知道!

    当今的大型企业,内部分工日趋细化,采购、服务、市场、销售、开发、支持、物流、财务、人力等各个环节,无不每时每刻产生着大量的数据。数据的格……查看详情

    发布时间:2019.09.04来源:知乎浏览量:18次

  • 什么是数据孤岛?为什么要消除数据孤岛?

    什么是数据孤岛?为什么要消除数据孤岛?

    数据孤岛通常具有负面含义。它描述了孤立的数据岛,数据孤岛通常存在以下问题:1.由于代码较旧或不兼容而无法以编程方式与其他系统一起工作2.……查看详情

    发布时间:2021.05.28来源:亿信数据治理知识库浏览量:92次

  • 扩展数据治理 推进数字化转型

    扩展数据治理 推进数字化转型

    数据正在重新定义我们的工作方式。当数据在上升至公司议程的同时,数据治理也得到了更多关注。数据治理正在迅速成为企业战略重点和不可或缺的业务……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:20次

  • 金融业的数据治理重要开端:数据流入

    金融业的数据治理重要开端:数据流入

    随着科技的发展,当今社会已经进入到了信息时代的下一阶段,“数据时代”,大数据成为了众多行业的风口,数据自然而然便……查看详情

    发布时间:2019.01.04来源:尼锅浏览量:15次

  • 用大数据守护绿水青山,铸就“智慧环保”

    用大数据守护绿水青山,铸就“智慧环保”

    为了打破数据壁垒,基于亿信华辰的睿治数据治理平台和实时大数据平台PetaBase-s搭建A市生态环境大数据管理平台。……查看详情

    发布时间:2021.05.07来源:亿信华辰浏览量:9次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议