立即扫码
享受一对一服务

发布时间:2019.02.20来源:数据治理浏览量:144次标签:数据治理
最大限度地降低风险
建立数据使用的内部规则
实施合规性要求
改善内部和外部沟通
增加数据的价值
促进上述管理
减少开支
通过风险管理和优化帮助确保公司的持续存在
数据治理计划始终影响企业的战略,战术和运营水平(见下图)。为了在公司环境中有效地组织和使用数据并与其他数据项目协调,必须将数据治理程序视为一个持续的迭代过程。
除责任外,还必须澄清任何数据治理计划的以下方面(见下图)。
大多数公司已经为个人应用程序或业务部门提供了某种形式的数据治理,尽管它不一定全面制度化。因此,系统地引入数据治理通常是从非正式规则到正式控制的演变。
正式数据治理通常在公司达到无法再有效实施跨职能任务的规模时实施。
整个组织的一致,统一的数据和流程是更好和更全面的决策支持的先决条件;
通过明确的流程和数据更改规则,在技术,业务和组织层面提高IT环境的可扩展性;
中央控制机制提供了优化数据管理成本的潜力(在爆炸数据集时代越来越重要);
通过使用协同作用提高效率(例如通过重用流程和数据);
通过质量保证和认证数据以及数据流程的完整文档提高数据信心;
实现合规指南,例如Basel III和Solvency II;
通过监控和审查隐私政策来保护内部和外部数据;
通过减少长期协调流程(例如通过明确的需求管理)提高流程效率;
通过标准化进行清晰透明的沟通。这是企业范围以数据为中心的举措的先决条件;
此外,每个数据治理计划的特定性质都会产生特定的好处。
数据治理比以往任何时候都更为公司保持响应能力至关重要。开辟新的创新业务领域也很重要,例如通过大数据分析,这些分析不允许持续存在落后思维和大修结构。
建立以数据为中心的视图以支持数字业务模型
企业范围的数据质量和主数据管理
大数据环境中数据的可管理性
制定标准以提高对外部影响的反应能力(例如并购)
自助BI(SSBI):用户希望独立于IT进行分析
合规性:透明且易于理解的数据流程,以符合法律要求
除了这些驱动因素之外,还有许多其他开发和要求使数据治理越来越相关。
示例包括运营商业智能,高级分析,社交媒体,360度客户视图,云中的BI或服务,信息策略以及数据内部和外部使用(SCM,CRM)的数据保护指南。
数据治理挑战
数据治理的相关性是显而易见的。尽管如此,尽管有许多优势,许多公司仍然害怕实施数据治理计划 - 要么是因为假定的复杂性,要么是由于普遍的不确定性。
实施数据治理计划绝不是一项微不足道的任务。以下是实施阶段的一些最大障碍:
接受和沟通
数据治理需要通过合适的员工在适当的地方之间的工作沟通来接受。特别是项目经理需要了解技术和业务方面,行话,最好是公司的总体概念。
预算和利益相关者
通常仍然难以让组织中的利益相关者相信数据治理计划的需要并获得预算。此外,变化往往受到根深蒂固的阻碍,但信息处理中的功能流程和缺陷可以通过业务部门中不直接可见的资源来补偿。
标准化和灵活性
企业需要灵活应对快速变化的需求。但是,根据每个公司的业务需求,在灵活性和数据治理标准之间寻求适当的平衡至关重要。
实施数据治理计划
数据治理不是一个大爆炸的举措,也不会以这种方式运作。相反,全球倡议是高度复杂的长期项目。因此,他们冒着参与者可能随着时间的推移失去信任和兴趣的风险。
因此,建议从可管理或特定于应用程序的原型项目开始,并继续迭代。通过这种方式,项目仍然可管理,经验可用于更复杂的项目或扩展公司的数据治理计划。
定义目标并了解利益;
分析当前状态和delta分析;
得出路线图;
说服利益相关者和预算项目;
制定和规划数据治理计划;
实施数据治理计划;
监视和控制。
这些步骤不仅要为每个新程序重复,而且如果进行了更改,还需要重复这些步骤。
以下工具可帮助实施数据治理计划:
三个公司层面(战略,战术和运营)以及其组织,业务和技术方面构成了矩阵的基础。通过其结构,可以使用所涉及的主题,流程,角色和任务的规范来充实数据管理项目。
应该指出的是,层次,组织,业务和技术方面以及公司中的角色的预测应该非常具体。然而,矩阵适用于数据管理领域的任何主题。
DAMA框架提供所有相关的数据管理主题和记录的标准。它们被分配到BARC 9-Field Matrix中的一个字段。
以这种方式,可以以结构化方式将每个字段的当前状态与目标状态进行比较。在这样做时,可以识别增量,可以设置优先级并且可以导出具有具体动作的路线图。
数据治理委员会(指导委员会/战略层面)
数据治理委员会(战术层面)
数据管理器
数据所有者
数据管家
数据用户
模板和库
模板比角色模型更进一步。除此之外,它们还包括最佳实践流程,决策规则,数据质量规则,关键指标和任务类型。
BARC建议
以下提示将帮助您实施数据治理计划或计划:
发布时间:2019.07.30来源:知乎浏览量:107次
发布时间:2019.02.25来源:亿信华辰浏览量:101次
发布时间:2019.03.27来源:亿信华辰浏览量:109次
发布时间:2019.03.18来源:亿信华辰浏览量:107次
发布时间:2018.12.21来源:数据管理浏览量:78次
发布时间:2020.01.09来源:CSDN浏览量:104次
发布时间:2021.02.06来源:知乎浏览量:90次
发布时间:2019.08.15来源:知乎浏览量:99次
发布时间:2019.02.15来源:数据管理浏览量:98次
人工
客服
预约
演示
您好,商务咨询请联系
400咨询:4000011866
咨询热线:137-0121-6791
技术
支持
您好,技术支持请联系
QQ:400-0011-866
(工作日9:00-18:00)