从数据中台的演进之路看未来发展,你需要是中台吗

发布时间:2020.08.26来源:小亿浏览量:130次标签:数据治理

随着数据中台越来越火,很多企业纷纷建起了自己的数据中台,数据中台一下子火爆起来,越来越多的人开始了解中台,很多人就会存在疑问,数据中台到底是如何兴起的?

本文分享的议题主要包括如下几大内容:
带大家回顾一下大数据在国内的发展,从数据库到当前数据中台的演进过程。
个人认为数据中台应该具备哪些能力,以及一些技术选型参考。

分享一些我们在数据中台方面的实践,主要是数据中台解决方案。


数据中台演进的四个阶段



首先给大家分享一下数据中台的演进之路,一起看一下数据中台的四个阶段,了解一下我们数据中台到底是如何一步一步走到今天的。

第一个阶段是数据库阶段,这个阶段主要是为了解决OLTP(联机事务处理)的需求,通俗来讲,就是前端加数据库,将用户行为存入数据库,用来进行事务处理,随着数据越来越多,新的需求出现了,就是第二个阶段,分析的需求

第二个阶段是数据仓库阶段,这个阶段主要需求是OLAP(联机分析处理),不仅仅是存数据,企业需要根据数据进行分析,例如淘宝,每天有大量的交易数据,那这些数据可以进行分析,分析出这些交易来自哪些人,哪群人,哪部分地方销量好等等,可以进行事后的差异分析和追溯分析。

第三个阶段是数据平台阶段,这个阶段主要解决海量数据的分析问题,跟第二个阶段不同的是,这个阶段主要解决技术问题,数据量太大,对数据库架构有很大的挑战。比如阿里就经过一段时间的试验,阿里巴巴最开始用的Oracle RAC建立数据仓库,但是因为数据量增长太快,很快就将节点用完,而且Oracle PAC是付费的,所以阿里研究出用Hadoop代替Oracle RAC的好处是要增加数据处理的能力和容量,只需要增加服务器就好,成本不高,在海量数据处理和大规模并行处理上有很大优势。

第四个阶段是数据中台阶段。这个阶段主要将我们的分析结果变成运营动作,传统IT建设,企业的各种信息系统大多是独立建设的,无法做到信息的互联互通,导致企业内部出现数据孤岛,分散在各个孤岛的数据无法很好地支撑企业的经营决策,也无法很好地应对快速变化的前端业务,因此,需要这样一套机制,整合分散的数据,快速形成数据服务,为企业经营决策提供支持,这套机制就是数据中台。

数据中台具备的四大能力
数据中台不是一套软件系统,也不是一个标准化产品,只能说,站在企业的角度上,数据中台更多地指向企业的业务目标,也即帮助企业沉淀业务能力,提升业务效率,最终完成数字化转型。那目前数据中台应该具备哪些能力呢?

1、数据整合
企业内部往往有多个信息系统和数据中心,大量系统、功能和应用重复建设,浪费很多资源,同时组织壁垒也导致数据孤岛。因此,需要对数据进行整合,将异构数据统一集中到数据中心来,数据中台需要具备集成的能力,能够接入、转换、写入或缓存企业内部多种来源的数据。

2、数据资产化
想要做数据中台,其中必不可少的一部分是数据资产化,数据就像石油,需要经过加工提纯才能进行使用,企业建设资产化,也需要围绕能给业务带来价值的数据资产进行建设,推动数据资产的形成。数据中台需要通过该统一的标准和质量体系,对数据进行加工,形成标准的资产体系,满足业务对数据的要求,也为后面的服务提供基础。

3、数据服务价值化
做好数据资产后,尽快要将数据用起来,需要将有价值的资产共享出去,需要提供数据服务,数据中台需要有数据服务能力,实现数据的最大价值变现。

4、数据分析应用
很多企业有可视化需求,数据中台需要有数据分析的能力,可以帮助企业快速实现数据资产的可视化分析,为企业数据化运营赋能。

数据中台未来趋势与展望
数据中台的建设,除了要有具备丰富行业经验的技术团队之外,还要有一套健全的、经受过大量项目的沉淀与检验的产品与工具,数据中台的最终效果和建设成本将取决于这套产品工具的自动化、智能化程度。所以通过人工智能技术来优化和改造数据中台也将成为重要的趋势。人工智能技术可以让数据中台更加敏捷和高效,未来在数据中台的底层工具和产品层面融入人工智能技术,可以自动分析源业务系统间的数据依赖关系、智能推荐主数据、数据标准、数据治理建议,还可以自动生成脚本等。

亿信华辰推出了符合企业数字化转型的数据中台解决方案,通过采集、存储、计算,治理技术形成统一标准和口径的数据资产服务,解决数据孤岛、数据资产流失、数据服务能力不足、数据价值低的问题,最终使数据能够赋能业务场景、产生业务价值。亿信数据中台有以下特性:

数据资产的规划和治理
从业务角度去思考企业的数据资产是什么。数据资产不等同于数据,数据资产是唯一的,能为业务产生价值的数据。对于同一堆数据,不同业务部门所关注的数据指标可能完全不同,怎么让各个跨域的业务变成统一的标准,就需要规划企业的数据全景图,将所有有可能用上的、所有对企业有可能有价值的数据都规划出来,最终梳理出企业的数据资产目录。

数据的共享和协作
企业的数据中台一定是跨领域的,需要让所有的人都知道数据资产目录在哪里。不能因为数据安全,就不让大家知道企业有什么数据。没有共享和开放,数据没有办法流动起来,没有流动的话数据的价值产生的速度就会非常慢。

业务价值的探索和分析
数据中台不仅要建立到源数据的通路,还需要提供分析数据的工具和能力,帮助业务人员去探索和发现数据的业务价值。一个好的数据中台解决方案中需要针对不同业务岗位的用户提供个性化的数据探索和分析的工具,并且在此基础上一键生成数据接口,以多样化的方式提供给前台系统。

数据服务的构建和治理
数据中台需要保证数据服务的性能和稳定性,以及数据质量和准确性,还需要具备强大的服务治理能力。数据中台是一个生态平台,在数据中台上面会不断生长各种数据服务,所以从一开始就构建好数据服务的治理结构是非常重要的,数据服务需要可以被记录、可被跟踪、可被审计、可被监控。

数据服务的度量和运营
如果数据中台最终只是做到把数据给到业务人员,那它就只是一个搬运工的角色。数据中台还需要具备度量和运营数据服务的能力,能够对中台上提供的数据服务及相关行为持续跟踪和记录,包括哪些数据服务被哪个部门使用、用了多少次等,通过这些去度量每一个数据服务的业务价值。

数据中台的一步步发展,最终是为了解决企业面临的问题,数据怎么用,如何产生更大的价值,需要不断进行资产化、服务化,帮助企业梳理业务场景,数据中台是对未来场景的能力支撑,也是为了增缓未来。数据中台的幕布已经揭开,相信未来各个企业会将中台演绎得更加精彩!
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:219次

  • 一文透露银行业的数据治理该不该做,又怎么做?

    一文透露银行业的数据治理该不该做,又怎么做?

    小宋最近同学会,一个大学同学就职银行信息科技部门,听说小宋也在一家大数据公司便拉起小宋的手要和她好好掰扯掰扯一下银行业的数据治理了。银行……查看详情

    发布时间:2020.07.29来源:今日头条浏览量:133次

  • 数据治理运作:差距

    数据治理运作:差距

    十年前,顾问必须提高认识并教育客户治理;突出监管风险,合规要求,处罚等。这更像是出售保险产品。今天,全球组织都了解数据治理(DG)是什么……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:145次

  • 做好数据治理,助力政府治理体系和治理能力现代化

    做好数据治理,助力政府治理体系和治理能力现代化

    当前,数据及其技术的融合应用在政府经济调节、市场监管、社会管理、公共服务、生态环境保护等各项工作中强劲助攻、潜力无限。但由于数据是新型生……查看详情

    发布时间:2020.04.02来源:知乎浏览量:170次

  • 您是将数据视为资产吗?

    您是将数据视为资产吗?

    您可以做的最好的事情是鼓励以数据为中心的文化,实现安全和隐私的重要性,以及了解数据对您组织的成功至关重要。 这是我们不断听到的一句话,……查看详情

    发布时间:2018.12.28来源:数据治理浏览量:131次

  • 数据标准管理工具最全介绍:背景、功能和案例都在这!

    数据标准管理工具最全介绍:背景、功能和案例都在这!

    数据标准管理工具作为企业开展数据管控的抓手,需要把数据管理制度办法中建立的各项工作流在信息化系统中实现,避免线下流程,这就需要工具能支持……查看详情

    发布时间:2021.08.03来源:亿信数据治理知识库浏览量:1129次

  • 数据治理推动业务价值并降低风险

    数据治理推动业务价值并降低风险

    治理推动业务价值并降低风险 数据分析治理是你需要把你的数据转化为创造竞争优势,并帮助您的宝贵商业资产的保险EVOLVE您的组织。……查看详情

    发布时间:2018.11.16来源:互联网浏览量:148次

  • 数据治理没有权威定义

    数据治理没有权威定义

    数据治理没有权威定义,但在实践中,它要么是管理数据资产以确保可信度和责任的首要过程,要么是所述流程的最高级别,即制定决策和制定策略的流程……查看详情

    发布时间:2018.12.04来源:Daniel Howard,Philip Howard浏览量:127次

  • 对于制药公司而言,数据治理不应成为吞下难以接受的药物

    对于制药公司而言,数据治理不应成为吞下难以接受的药物

    制药和生命科学公司面临着许多与其他行业相同的数字转型压力,例如我们之前探讨过的金融服务和医疗保健。作为回应,他们正在转向高级分析平台和基……查看详情

    发布时间:2018.12.06来源:迈克尔帕斯托雷浏览量:160次

  • 您不应该进行数据治理的3个理由

    您不应该进行数据治理的3个理由

    今天有很多关于数据治理的讨论。但令人惊讶的是,今天“进行数据治理”的组织数量并不高。在我看来,数据治理是现代数据驱动型企业的必备条件。但……查看详情

    发布时间:2018.12.13来源:数据治理浏览量:125次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议