“数据治理那点事”系列之一:那些年我们一起踩过的坑
发布时间:2019.08.02来源:知乎浏览量:82次标签:数据治理
在实践当中有过成功的经验,当然也经历过很多失败的教训,在这些过程中,我一直在思考大数据治理究竟是在治理什么?要达到什么样的合理目标?中间应该怎么避免走一些弯路?
误区一:客户需求不明确
客户既然请厂商来帮助自己做数据治理,必定是看到了自己的数据存在种种问题。但是做什么,怎么做,做多大的范围,先做什么后做什么,达到什么样的目标,业务部门、技术部门、厂商之间如何配合做······很多客户其实并没有想清楚自已真正想解决的问题。数据治理,难在找到一个切入点。
误区二:数据治理是技术部门的事
数据问题产生的原因,往往是业务>技术,如:数据来源渠道多,责任不明确,导致同一份数据在不同的信息系统有不同的表述;业务需求不清晰,数据填报不规范或缺失,等等。很多表面上的技术问题,如ETL过程中某代号变更导致数据加工出错,影响报表中的数据正确性等,在本质上其实还是业务管理的不规范。
误区三:大而全的数据治理
出于投资回报的考虑,客户往往倾向于做一个覆盖全业务和技术域的、大而全的数据治理项目。从数据的产生,到加工、应用、销毁,数据的整个生命周期他们希望都能管到。从业务系统,到数据中心,到数据应用,里面的每个数据他们希望都能被纳入到数据治理的范围中来。
误区四:工具是万能的
很多客户都认为,数据治理就是花一些钱,买一些工具,认为工具就是一个过滤器,过滤器做好了,数据从中间一过,就没问题了。结果是:一方面功能越做越多,另一方面实际上线后,功能复杂,用户不愿意用。
误区五:数据标准难落地
很多客户一说到数据治理,马上就说我们有很多数据标准,但是这些标准却统统没有落地,因此,我们要先做数据标准的落地。数据标准真正落地了,数据质量自然就好了。
误区六:数据质量问题找出来了,然后呢?
辛辛苦苦建立起来平台,业务和技术人员通力合作,配置好了数据质量的检核规则,也找出来了一大堆的数据质量问题,然后呢?半年之后,一年之后,同样的数据质量问题依旧存在。
误区七:你们好像什么也没做?
很多数据治理的项目难验收,客户往往有疑问:你们做数据治理究竟干了些啥?看你们汇报说干了一大堆事情,我们怎么什么都看不到? 发生这种情况,原因往往有前面误区一所说的客户需求不明确,误区三所说的做了大而全的数据治理而难以收尾等,但还有一个原因不容忽视,那就是没有让客户感知到数据治理的成果,可以在成果的可视化呈现,以及平常与客户的沟通、培训、知识转移等过程中,就数据治理的重要性、发挥的价值等方面对客户进行潜移默化的影响。
在激烈的市场竞争下,大数据厂商提出来数据治理的各种理念,有的提出覆盖数据全生命周期的数据治理,有的提出以用户为中心的自服务化数据治理,有的提出减少人工干预、节省成本的基于人工智能的自动化数据治理,在面对这些概念的时候,我们一方面要对数据现状有清晰的认识,对数据治理的目标有明确的诉求,另一方面还要知道数据治理中各种常见的误区,跨越这些陷阱,才能把数据治理工作真正落到实处,项目取得成效,做到数据更准确,数据更好取,数据更好用,真正地用数据提升业务水平。
-
治理,管理和质量角色和责任
最好的数据治理计划通过减少模糊性,建立明确的问责制以及向所有数据利益相关者传播与数据相关的信息,积极主动地在数据相关问题开始之前采取措施……查看详情发布时间:2019.03.18来源:亿信华辰浏览量:97次
-
数据治理包括哪几个方面
大数据时代的到来,让政府、企业看到了数据资产的价值,快速开始探索应用场景和商业模式、建设技术平台。这无可厚非。但是,如果在大数据拼图中遗……查看详情发布时间:2022.05.10来源:小亿浏览量:1562次
-
走向人工智能治理的趋势
这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间……查看详情发布时间:2019.03.06来源:亿信华辰浏览量:91次
-
数据安全治理所遵循的三大原则
搞清楚数据安全要解决哪些问题、大数据时代下解决这些问题所面临的主要挑战,就可以梳理数据安全治理的核心思路了。简单说,数据安全治理可以遵循……查看详情发布时间:2019.05.23来源:知乎浏览量:55次
-
2020年数据治理研究报告
2020年5月发布的《中共中央 国务院关于新时代加快完善社会主义市场经济体制的意见》中提出,要加快培育发展数据要素市场,建立数据资源清单……查看详情发布时间:2021.02.27来源:知乎浏览量:74次
-
数据治理最佳实践利用大数据
大数据时代的新兴技术,如人工智能和物联网,意味着有更多的数据可以从中受益,并且数据治理策略可以管理和保护。……查看详情发布时间:2019.06.28来源:知乎浏览量:106次
-
什么是数据标准?如何建设管理?这篇文章给你讲明白了
数据标准是一套由管理制度、管控流程、技术工具共同组成的体系,通过这套体系来推广和应用统一的数据定义、数据分类、纪律格式和转换、编码等来对……查看详情发布时间:2020.11.11来源:头条浏览量:100次
-
数据治理如何推动医疗大数据的发展
数据治理是一种管理数据的方法,允许组织平衡两个需求:收集和保护信息的需求,同时从信息中获取价值。但它远不止于此。医疗大数据其中的健康数据……查看详情发布时间:2019.08.15来源:知乎浏览量:93次
-
数据管理自动化框架的五个好处
组织负责管理比以往任何时候都多的数据,使一个强大的自动化框架成为必要。但是自动化框架到底是什么,它又有什么关系呢?……查看详情发布时间:2019.02.13来源:亿信华辰浏览量:110次