“数据治理那点事”系列之一:那些年我们一起踩过的坑

发布时间:2019.08.02来源:知乎浏览量:103次标签:数据治理

大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大打折扣,甚至根本不可用不敢用,因此,数据治理是大数据时代我们用好海量数据的必然选择。
但大家都知道,数据治理是一项长期而繁杂的工作,可以说是大数据领域中的脏活累活,很多时候数据治理厂商做了很多工作,客户却认为没有看到什么成果。大部分数据治理咨询项目都能交上一份让客户足够满意的答卷,但是当把咨询成果落地到实处的时候,因为种种原因,很可能是另一番截然不同的风景。如何避免这种情况发生,是每一个做数据治理的企业都值得深思的问题。


在实践当中有过成功的经验,当然也经历过很多失败的教训,在这些过程中,我一直在思考大数据治理究竟是在治理什么?要达到什么样的合理目标?中间应该怎么避免走一些弯路?


误区一:客户需求不明确
客户既然请厂商来帮助自己做数据治理,必定是看到了自己的数据存在种种问题。但是做什么,怎么做,做多大的范围,先做什么后做什么,达到什么样的目标,业务部门、技术部门、厂商之间如何配合做······很多客户其实并没有想清楚自已真正想解决的问题。数据治理,难在找到一个切入点。


误区二:数据治理是技术部门的事
数据问题产生的原因,往往是业务>技术,如:数据来源渠道多,责任不明确,导致同一份数据在不同的信息系统有不同的表述;业务需求不清晰,数据填报不规范或缺失,等等。很多表面上的技术问题,如ETL过程中某代号变更导致数据加工出错,影响报表中的数据正确性等,在本质上其实还是业务管理的不规范。


误区三:大而全的数据治理
出于投资回报的考虑,客户往往倾向于做一个覆盖全业务和技术域的、大而全的数据治理项目。从数据的产生,到加工、应用、销毁,数据的整个生命周期他们希望都能管到。从业务系统,到数据中心,到数据应用,里面的每个数据他们希望都能被纳入到数据治理的范围中来。


但殊不知广义上的数据治理是一个很大的概念,包括很多内容,想在一个项目里就做完通常是不可能的,而是需要分期分批地实施,所以厂商如果屈从于客户的这种想法,很容易导致最后哪个也做不好,用不起来。所以,我们需要引导客户,遵循2/8原则——80%的问题产生于20%的系统和数据——从最核心的系统、最重要的数据、最容易产生问题的地方开始着手做数据治理。


误区四:工具是万能的
很多客户都认为,数据治理就是花一些钱,买一些工具,认为工具就是一个过滤器,过滤器做好了,数据从中间一过,就没问题了。结果是:一方面功能越做越多,另一方面实际上线后,功能复杂,用户不愿意用。

其实上面的想法是一种简单化的思维,数据治理本身包含很多的内容——组织架构、制度流程、成熟工具、现场实施和运维——这四项缺一不可,工具只是其中一部分内容。大家在做数据治理最容易忽视的就是组织架构和人员配置,但实际上所有的活动流程、制度规范都需要人来执行、落实和推动,没有对人员的安排,后续工作很难得到保障。 建议大家在做数据治理的时候将组织架构放在第一位,有组织的存在,就会有人去思考这方面的工作,怎么去推动,持续把事情做好,以人为中心的数据治理工作,才更容易推广落地。

误区五:数据标准难落地
很多客户一说到数据治理,马上就说我们有很多数据标准,但是这些标准却统统没有落地,因此,我们要先做数据标准的落地。数据标准真正落地了,数据质量自然就好了。
但这种说法其实混淆了数据标准和数据标准化。首先要明白一个道理:数据标准是一定要做的,但是数据标准化,也就是数据标准的落地,则需要分情况实施。后续会有一篇专门的文章,来讨论数据标准和标准化工作。


误区六:数据质量问题找出来了,然后呢?
辛辛苦苦建立起来平台,业务和技术人员通力合作,配置好了数据质量的检核规则,也找出来了一大堆的数据质量问题,然后呢?半年之后,一年之后,同样的数据质量问题依旧存在。

发生这种问题的根源在于没有形成数据质量问责的闭环。 要做到数据质量问题的问责,首先需要做到数据质量问题的定责。定责的基本原则是:谁生产,谁负责。数据是从谁那里出来的,谁负责处理数据质量问题。定责之后是问责,问责之后是整改和反馈,然后是质量问题的新一轮评估,直至形成绩效考核和排名。只有形成这种工作闭环,才能真正提升数据质量。


误区七:你们好像什么也没做?
很多数据治理的项目难验收,客户往往有疑问:你们做数据治理究竟干了些啥?看你们汇报说干了一大堆事情,我们怎么什么都看不到? 发生这种情况,原因往往有前面误区一所说的客户需求不明确,误区三所说的做了大而全的数据治理而难以收尾等,但还有一个原因不容忽视,那就是没有让客户感知到数据治理的成果,可以在成果的可视化呈现,以及平常与客户的沟通、培训、知识转移等过程中,就数据治理的重要性、发挥的价值等方面对客户进行潜移默化的影响。

【总结】
在激烈的市场竞争下,大数据厂商提出来数据治理的各种理念,有的提出覆盖数据全生命周期的数据治理,有的提出以用户为中心的自服务化数据治理,有的提出减少人工干预、节省成本的基于人工智能的自动化数据治理,在面对这些概念的时候,我们一方面要对数据现状有清晰的认识,对数据治理的目标有明确的诉求,另一方面还要知道数据治理中各种常见的误区,跨越这些陷阱,才能把数据治理工作真正落到实处,项目取得成效,做到数据更准确,数据更好取,数据更好用,真正地用数据提升业务水平。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理VS数据安全治理

    数据治理VS数据安全治理

    企业信息化建设是随着企业战略、业务形态、预算等多个方面不断迭代及变化的,所以在建设过程中难免出现阶段鸿沟,跨阶段整合难的现象,当企业以数……查看详情

    发布时间:2020.06.29来源:CSDN浏览量:120次

  • 数据资产如何安全可追溯,你们应该这样做!

    数据资产如何安全可追溯,你们应该这样做!

    近年来,食品安全中提到产地的可追溯性,给许多生鲜打上了专属的身份证以便出现问题可以追根溯源。而这并不稀奇,在使用报表工具时处于数据安全考……查看详情

    发布时间:2021.03.12来源:知乎浏览量:120次

  • 企业数据治理的十个最佳实践

    企业数据治理的十个最佳实践

    任何企业实施数据治理都不是为了治理数据而治理数据,其背后都是管理和业务目标的驱动。企业中普遍存在的数据质量问题有:数据不一致、数据重复、……查看详情

    发布时间:2020.07.02来源:知乎浏览量:335次

  • 加强数据治理-浅析企业数据治理机制

    加强数据治理-浅析企业数据治理机制

    数据治理是对企业数据资产管理行使权力和控制的活动集合(规划、监控和执行),是建立企业数据管理制度、指导企业执行数据规划、数据环境建设、数……查看详情

    发布时间:2018.12.07来源:浏览量:148次

  • 数据标准管理工具最全介绍:背景、功能和案例都在这!

    数据标准管理工具最全介绍:背景、功能和案例都在这!

    数据标准管理工具作为企业开展数据管控的抓手,需要把数据管理制度办法中建立的各项工作流在信息化系统中实现,避免线下流程,这就需要工具能支持……查看详情

    发布时间:2021.08.03来源:亿信数据治理知识库浏览量:1033次

  • 数据治理(DG)

    数据治理(DG)

    数据治理(DG)是对企业中使用的数据的可用性,可用性,完整性和安全性的整体管理。健全的数据治理计划包括理事机构或理事会,一套明确的程序和……查看详情

    发布时间:2018.11.12来源:techtarget浏览量:162次

  • 数据科学的下一个「超能力」:模型可解释性

    数据科学的下一个「超能力」:模型可解释性

    很多人重视重视模型的预测能力,却忽略了模型可解释性的重要性,只知其然而不知其所以然。为什么说模型的可解释性这么重要呢?作者就 5 个方面……查看详情

    发布时间:2019.03.28来源:亿信华辰浏览量:120次

  • 数据治理需要转变

    数据治理需要转变

    环境数据治理是一种策略和方法,它不仅可以扩展您的数据治理工作,还可以作为解决方案,以满足我们为新用例,法规和新出现的数字功能扩展数据时存……查看详情

    发布时间:2019.02.15来源:Michele Goetz浏览量:102次

  • 企业如何实现成功的数据治理

    企业如何实现成功的数据治理

    如今,大数据正在社会的各行各业发挥着越来越重要的作用,数据已成为企业的核心资产和重要战略资源,是重要的生产因素。但是数据中存在着各种各样……查看详情

    发布时间:2019.09.09来源:知乎浏览量:130次

  • 区块链和AI如何帮助掌握数据管理

    区块链和AI如何帮助掌握数据管理

    主数据很容易成为企业拥有的最重要的资产之一。随着数字化的不断发展和第四次工业革命的到来,主数据的价值和主数据管理的重要性才会增长。在我们……查看详情

    发布时间:2019.07.11来源:福布斯浏览量:108次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议