“数据治理那点事”系列之一:那些年我们一起踩过的坑

发布时间:2019.08.02来源:知乎浏览量:100次标签:数据治理

大数据时代,数据成为社会和组织的宝贵资产,像工业时代的石油和电力一样驱动万物,然而如果石油的杂质太多,电流的电压不稳,数据的价值岂不是大打折扣,甚至根本不可用不敢用,因此,数据治理是大数据时代我们用好海量数据的必然选择。
但大家都知道,数据治理是一项长期而繁杂的工作,可以说是大数据领域中的脏活累活,很多时候数据治理厂商做了很多工作,客户却认为没有看到什么成果。大部分数据治理咨询项目都能交上一份让客户足够满意的答卷,但是当把咨询成果落地到实处的时候,因为种种原因,很可能是另一番截然不同的风景。如何避免这种情况发生,是每一个做数据治理的企业都值得深思的问题。


在实践当中有过成功的经验,当然也经历过很多失败的教训,在这些过程中,我一直在思考大数据治理究竟是在治理什么?要达到什么样的合理目标?中间应该怎么避免走一些弯路?


误区一:客户需求不明确
客户既然请厂商来帮助自己做数据治理,必定是看到了自己的数据存在种种问题。但是做什么,怎么做,做多大的范围,先做什么后做什么,达到什么样的目标,业务部门、技术部门、厂商之间如何配合做······很多客户其实并没有想清楚自已真正想解决的问题。数据治理,难在找到一个切入点。


误区二:数据治理是技术部门的事
数据问题产生的原因,往往是业务>技术,如:数据来源渠道多,责任不明确,导致同一份数据在不同的信息系统有不同的表述;业务需求不清晰,数据填报不规范或缺失,等等。很多表面上的技术问题,如ETL过程中某代号变更导致数据加工出错,影响报表中的数据正确性等,在本质上其实还是业务管理的不规范。


误区三:大而全的数据治理
出于投资回报的考虑,客户往往倾向于做一个覆盖全业务和技术域的、大而全的数据治理项目。从数据的产生,到加工、应用、销毁,数据的整个生命周期他们希望都能管到。从业务系统,到数据中心,到数据应用,里面的每个数据他们希望都能被纳入到数据治理的范围中来。


但殊不知广义上的数据治理是一个很大的概念,包括很多内容,想在一个项目里就做完通常是不可能的,而是需要分期分批地实施,所以厂商如果屈从于客户的这种想法,很容易导致最后哪个也做不好,用不起来。所以,我们需要引导客户,遵循2/8原则——80%的问题产生于20%的系统和数据——从最核心的系统、最重要的数据、最容易产生问题的地方开始着手做数据治理。


误区四:工具是万能的
很多客户都认为,数据治理就是花一些钱,买一些工具,认为工具就是一个过滤器,过滤器做好了,数据从中间一过,就没问题了。结果是:一方面功能越做越多,另一方面实际上线后,功能复杂,用户不愿意用。

其实上面的想法是一种简单化的思维,数据治理本身包含很多的内容——组织架构、制度流程、成熟工具、现场实施和运维——这四项缺一不可,工具只是其中一部分内容。大家在做数据治理最容易忽视的就是组织架构和人员配置,但实际上所有的活动流程、制度规范都需要人来执行、落实和推动,没有对人员的安排,后续工作很难得到保障。 建议大家在做数据治理的时候将组织架构放在第一位,有组织的存在,就会有人去思考这方面的工作,怎么去推动,持续把事情做好,以人为中心的数据治理工作,才更容易推广落地。

误区五:数据标准难落地
很多客户一说到数据治理,马上就说我们有很多数据标准,但是这些标准却统统没有落地,因此,我们要先做数据标准的落地。数据标准真正落地了,数据质量自然就好了。
但这种说法其实混淆了数据标准和数据标准化。首先要明白一个道理:数据标准是一定要做的,但是数据标准化,也就是数据标准的落地,则需要分情况实施。后续会有一篇专门的文章,来讨论数据标准和标准化工作。


误区六:数据质量问题找出来了,然后呢?
辛辛苦苦建立起来平台,业务和技术人员通力合作,配置好了数据质量的检核规则,也找出来了一大堆的数据质量问题,然后呢?半年之后,一年之后,同样的数据质量问题依旧存在。

发生这种问题的根源在于没有形成数据质量问责的闭环。 要做到数据质量问题的问责,首先需要做到数据质量问题的定责。定责的基本原则是:谁生产,谁负责。数据是从谁那里出来的,谁负责处理数据质量问题。定责之后是问责,问责之后是整改和反馈,然后是质量问题的新一轮评估,直至形成绩效考核和排名。只有形成这种工作闭环,才能真正提升数据质量。


误区七:你们好像什么也没做?
很多数据治理的项目难验收,客户往往有疑问:你们做数据治理究竟干了些啥?看你们汇报说干了一大堆事情,我们怎么什么都看不到? 发生这种情况,原因往往有前面误区一所说的客户需求不明确,误区三所说的做了大而全的数据治理而难以收尾等,但还有一个原因不容忽视,那就是没有让客户感知到数据治理的成果,可以在成果的可视化呈现,以及平常与客户的沟通、培训、知识转移等过程中,就数据治理的重要性、发挥的价值等方面对客户进行潜移默化的影响。

【总结】
在激烈的市场竞争下,大数据厂商提出来数据治理的各种理念,有的提出覆盖数据全生命周期的数据治理,有的提出以用户为中心的自服务化数据治理,有的提出减少人工干预、节省成本的基于人工智能的自动化数据治理,在面对这些概念的时候,我们一方面要对数据现状有清晰的认识,对数据治理的目标有明确的诉求,另一方面还要知道数据治理中各种常见的误区,跨越这些陷阱,才能把数据治理工作真正落到实处,项目取得成效,做到数据更准确,数据更好取,数据更好用,真正地用数据提升业务水平。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理标准:数据质量六大评价标准

    数据治理标准:数据质量六大评价标准

    万事万物都有其标准,铁轨有规定的标准宽度,一千克有规定的标准重量。那么在大数据时代,企业中各种各样的数据是否也有统一的数据标准呢?数据标……查看详情

    发布时间:2022.01.20来源:小亿浏览量:4262次

  • 基于大数据的质量管理系统怎么选?

    基于大数据的质量管理系统怎么选?

    对于一个制造企业来说,生产是企业最大的动力,而生产质量也需要进行优化管理,一个好的质量管理会带给企业巨大的发展空间和利润价值。正因如此,……查看详情

    发布时间:2019.11.07来源:知乎浏览量:109次

  • 数据治理的方法论是什么?

    数据治理的方法论是什么?

    一套科学、完整的实施方法论,可以为用户建立一套适应用户业务需求,并且操作性强的主数据管理体系。遵循该方法路线进行数据治理工作可以大大缩减……查看详情

    发布时间:2019.06.14来源:欣思博述数字化浏览量:108次

  • 数据治理的血缘分析

    数据治理的血缘分析

    数据治理里经常提到的一个词就是血缘分析,血缘分析是保证数据融合(聚合)的一个手段,通过血缘分析实现数据融合处理的可追溯。……查看详情

    发布时间:2019.11.22来源:CSDN浏览量:167次

  • 大数据时代的企业都有那些数据质量问题

    大数据时代的企业都有那些数据质量问题

    企业要想充发挥大数据的作用,就要保证数据的可靠、及时、准确,只有从高质量的数中提取出来的有用信息,企业才可以做出更精准的决策,才能更了解……查看详情

    发布时间:2019.09.27来源:数据分析网浏览量:96次

  • 数据治理和流分析的关系

    数据治理和流分析的关系

    借助流分析,可以通过智能数据模型和算法快速处理传入数据,以致在许多情况下,流数据没有机会被存储。与传统的分析过程相比,这是一个重要的变化……查看详情

    发布时间:2021.04.23来源:亿信数据治理知识库浏览量:107次

  • 元数据管理101:什么,为什么以及如何

    元数据管理101:什么,为什么以及如何

    元数据管理已逐渐成为成功的数字化计划战略的最重要实践之一。随着大数据和云等分布式体系结构的兴起,可以创建孤立的系统和数据,元数据管理对于……查看详情

    发布时间:2018.12.19来源:数据治理浏览量:99次

  • 大数据时代企业为什么需要数据治理吗?

    大数据时代企业为什么需要数据治理吗?

    如今数字化转型正在各行各业中迅速发展,以数据、流量、知识为主大数据时代已经到来,对于一个企业来说,要实施数字花和大数据战略,数据治理更为……查看详情

    发布时间:2019.07.18来源:知乎浏览量:130次

  • 企业何时考虑启动数据治理项目

    企业何时考虑启动数据治理项目

    数据治理应用方面原因有什么,企业信息化建设到了一定程度,开始对数据进行相关的展示、分析、应用等,进一步提高数据对企业统计分析和决策支持的……查看详情

    发布时间:2020.04.08来源:知乎浏览量:82次

  • 数据治理、数据管理、数据管控

    数据治理、数据管理、数据管控

    数据治理、数据管理、数据管控这三个名词在一定程度上的确是有所重叠的,容易混为一谈,所以就造成了在实际使用中,经常将这三个词语“混着用”、……查看详情

    发布时间:2021.03.06来源:知乎浏览量:158次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议