数据治理运营:团队

发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:14次标签:数据治理

这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原因以及所需要的。这部分更深入地了解了构建数据治理团队,成功运营的样子以及一些关键要点。

关键组成部分:内部治理团队

数据治理是人员,流程和技术的结合。在这三个组成部分中,人员组成部分可以为运营的程度和成功贡献40-50%。因此,充分了解内部治理团队类型至关重要。除了治理团队已经成熟并具有运营治理结构的少数组织之外,其他组织中的治理团队总是属于以下五种类型之一:


  • 新手团队:该团队了解治理概念并对实施理解充满信心,但缺乏实际的实施经验。大部分由高能团队组成,他们为治理计划找时间。不幸的是,该团队缺乏建立治理实践的能力。这可能是由于信任问题或等待雇用高级官员(例如,CDO)来推进它。资金不是主要问题。
  • 休眠团队:该团队主要由一些高级利益相关者组成,他们了解治理概念,并了解在业务部门或企业级别设置和操作治理需要什么。但由于缺乏高层管理人员推动治理,因此维持了反应性治理状态。在这种类型中,资金和赋权不是一个问题。
  • 虚拟团队:由多个项目的主题专家组成的团队,为治理相关的工作做出贡献,主要是兼职。这在组织内的职能部门意识到治理需求的情况下很常见,但在企业级别没有资金和高层管理人员的支持。目标是使治理继续发展,直到触发发生。由于这是一个虚拟组织,整个组织的治理策略执行受到影响。
  • 老龄化团队:这个团队的平均年龄很高,他们对治理和实施治理的兴趣水平很低。对治理举措的抵制将清晰可见,因为它被视为会增加他们的工作量而不返回的东西。
  • 无能为力的团队:在治理概念方面,该团队中的利益相关者的成熟度非常低。主要原因是缺乏高层管理人员的培训和指导以及启动治理。话虽如此,关键是要了解这个团队是如何形成的,因为它有时会改变推荐/解决方案的动态。


上述每种类型都需要不同的操作策略。发布治理类型标识后,可以利用组织变更管理(OCM)来实施治理。例如,新手团队需要授权,虚拟团队需要物理化,无知团队需要培训和/或入职经验丰富的管理人员来指导团队前进。


数据治理在哪里成功运作?

将治理融入组织文化的组织和将自己标识为“数据公司”的组织在企业级别具有运营数据治理设置。在银行和金融服务,医疗保健和生命科学等受到严格监管的行业中,重罚似乎在唤醒高级领导层,投资和重新审视其数据战略以保持治理数据健康以避免这些罚款年度方面起着至关重要的作用。一年之后。

在零售等受到温和监管的行业中,对360客户视图的需求促使公司实施数据治理。在能源与公用事业和制造业等行业,快速周转,优化和效率的需求正在推动数据治理议程的发展。

差距

根据质量公理,


  • “不能定义的东西无法衡量;
  • 无法衡量的是无法改善的
  • 无法改善的东西最终会恶化。“


在治理方面也是如此。高层管理人员希望每3个月看到一些有形的东西。换句话说,每花费一美元的投资回报率(ROI)。因此,如果没有明确表示如何展示DG的好处,那么操作化将是一个遥远的梦想。

解决这个问题的最佳方法是从小规模开始,为每个里程碑选择正确的项目,范围和指标。详细说明,一次选择一个治理区域,比如数据质量或元数据,并在显示价值和进度时进行扩展。这将有助于降低成本,适应不断变化的优先级,并灵活应对技术中断。

重点外卖

战略定义和实施之间的步骤对于成功实施治理至关重要。大多数精心策略定义包括对人员,流程和技术组件的成熟度评估。此外,他们还根据潜在的内部团队确定了对变更影响的一些见解。如果其中任何一个不可用,这应该是第一步。仔细研究成熟度和变化影响指数应该可以高度重视可能阻碍组织运营的因素。一旦识别出可能的治理阻止者,就很容易逐一解决。


调查方法

该调查包括研究分布在银行和金融服务,保险,医疗保健,能源和公用事业,零售,技术,通信和制造领域的19个组织。这些组织处于不同的成熟度和实施进度。分析模式:调查和与主题专家的交互相结合,接近各个客户位置的数据管理。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 新模型:组合投资组合管理和数据治理建议

    新模型:组合投资组合管理和数据治理建议

    通常,组织决定不让投资组合管理网守优先/授权所有来自治理主导的问题分析的建议。因此,创建了一个新模型,第三个存储桶。……查看详情

    发布时间:2019.03.29来源:亿信华辰浏览量:12次

  • 元数据管理是什么?元数据管理的意义

    元数据管理是什么?元数据管理的意义

    元数据管理是数据治理工作是重中之重,为什么企业内部的数据质量总是不高?其实只要有数据存在就有数据质量问题存在。但是也可以通过一个有效的管……查看详情

    发布时间:2021.08.11来源:亿信华辰数据治理知识库浏览量:27次

  • 影响企业大数据分析的三大误区

    影响企业大数据分析的三大误区

    我们现在身处一个虚拟时空交易与现实时空交付的数字化时代。数字化正在各行业快速发展,许多企业将会经历前所未有的改变。数据正发挥着越来越重要……查看详情

    发布时间:2022.03.08来源:小亿浏览量:9次

  • 四说大数据时代“神话”:从大数据到深数据

    四说大数据时代“神话”:从大数据到深数据

    为国内最大的电商平台之一,苏宁每天要处理数量巨大的数据。为了更快速高效地处理这些数据,苏宁调度平台采取了哪些措施呢?……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:13次

  • 数据治理—构建你的数据屏障

    数据治理—构建你的数据屏障

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.06.28来源:知乎浏览量:10次

  • 云,基础设施现代化和数据治理定义了2019年的IT成功

    云,基础设施现代化和数据治理定义了2019年的IT成功

    随着新兴数据技术的优先事项和采用不断升级,IT正在发生变化,挑战也在不断增加。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:16次

  • 数据中台与数据仓库相比的四大优势

    数据中台与数据仓库相比的四大优势

    数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。因此,其重点在于数据的集合。数据仓库可使用维度建……查看详情

    发布时间:2020.11.21来源:知乎浏览量:9次

  • 数据治理委员会:指导原则

    数据治理委员会:指导原则

    数据所有权 指定义与特定数据集相关的各种责任级别。讨论谁负责特定的数据任务已经使我们机构的数据维护和准确性变得更加简单。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:15次

  • 什么是数据工程师?高需求中的分析角色

    什么是数据工程师?高需求中的分析角色

    数据工程师是任何企业数据分析团队的重要成员,负责管理、优化、监督和监控整个组织内的数据检索、存储和分发。 ……查看详情

    发布时间:2019.01.15来源:亿信华辰浏览量:8次

  • 大数据资产管理平台建设方案

    大数据资产管理平台建设方案

    数据资产管理服务工作,涵盖企业IT系统生命周期的不同阶段,协助企业建立适合自身特点的数据资产管理制度,提升企业对自身数据资产管理的能力,……查看详情

    发布时间:2020.08.28来源:知乎浏览量:10次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议