数据治理运营:团队

发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:139次标签:数据治理

这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原因以及所需要的。这部分更深入地了解了构建数据治理团队,成功运营的样子以及一些关键要点。

关键组成部分:内部治理团队

数据治理是人员,流程和技术的结合。在这三个组成部分中,人员组成部分可以为运营的程度和成功贡献40-50%。因此,充分了解内部治理团队类型至关重要。除了治理团队已经成熟并具有运营治理结构的少数组织之外,其他组织中的治理团队总是属于以下五种类型之一:


  • 新手团队:该团队了解治理概念并对实施理解充满信心,但缺乏实际的实施经验。大部分由高能团队组成,他们为治理计划找时间。不幸的是,该团队缺乏建立治理实践的能力。这可能是由于信任问题或等待雇用高级官员(例如,CDO)来推进它。资金不是主要问题。
  • 休眠团队:该团队主要由一些高级利益相关者组成,他们了解治理概念,并了解在业务部门或企业级别设置和操作治理需要什么。但由于缺乏高层管理人员推动治理,因此维持了反应性治理状态。在这种类型中,资金和赋权不是一个问题。
  • 虚拟团队:由多个项目的主题专家组成的团队,为治理相关的工作做出贡献,主要是兼职。这在组织内的职能部门意识到治理需求的情况下很常见,但在企业级别没有资金和高层管理人员的支持。目标是使治理继续发展,直到触发发生。由于这是一个虚拟组织,整个组织的治理策略执行受到影响。
  • 老龄化团队:这个团队的平均年龄很高,他们对治理和实施治理的兴趣水平很低。对治理举措的抵制将清晰可见,因为它被视为会增加他们的工作量而不返回的东西。
  • 无能为力的团队:在治理概念方面,该团队中的利益相关者的成熟度非常低。主要原因是缺乏高层管理人员的培训和指导以及启动治理。话虽如此,关键是要了解这个团队是如何形成的,因为它有时会改变推荐/解决方案的动态。


上述每种类型都需要不同的操作策略。发布治理类型标识后,可以利用组织变更管理(OCM)来实施治理。例如,新手团队需要授权,虚拟团队需要物理化,无知团队需要培训和/或入职经验丰富的管理人员来指导团队前进。


数据治理在哪里成功运作?

将治理融入组织文化的组织和将自己标识为“数据公司”的组织在企业级别具有运营数据治理设置。在银行和金融服务,医疗保健和生命科学等受到严格监管的行业中,重罚似乎在唤醒高级领导层,投资和重新审视其数据战略以保持治理数据健康以避免这些罚款年度方面起着至关重要的作用。一年之后。

在零售等受到温和监管的行业中,对360客户视图的需求促使公司实施数据治理。在能源与公用事业和制造业等行业,快速周转,优化和效率的需求正在推动数据治理议程的发展。

差距

根据质量公理,


  • “不能定义的东西无法衡量;
  • 无法衡量的是无法改善的
  • 无法改善的东西最终会恶化。“


在治理方面也是如此。高层管理人员希望每3个月看到一些有形的东西。换句话说,每花费一美元的投资回报率(ROI)。因此,如果没有明确表示如何展示DG的好处,那么操作化将是一个遥远的梦想。

解决这个问题的最佳方法是从小规模开始,为每个里程碑选择正确的项目,范围和指标。详细说明,一次选择一个治理区域,比如数据质量或元数据,并在显示价值和进度时进行扩展。这将有助于降低成本,适应不断变化的优先级,并灵活应对技术中断。

重点外卖

战略定义和实施之间的步骤对于成功实施治理至关重要。大多数精心策略定义包括对人员,流程和技术组件的成熟度评估。此外,他们还根据潜在的内部团队确定了对变更影响的一些见解。如果其中任何一个不可用,这应该是第一步。仔细研究成熟度和变化影响指数应该可以高度重视可能阻碍组织运营的因素。一旦识别出可能的治理阻止者,就很容易逐一解决。


调查方法

该调查包括研究分布在银行和金融服务,保险,医疗保健,能源和公用事业,零售,技术,通信和制造领域的19个组织。这些组织处于不同的成熟度和实施进度。分析模式:调查和与主题专家的交互相结合,接近各个客户位置的数据管理。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 谈大数据时代下的数据治理

    谈大数据时代下的数据治理

    2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划……查看详情

    发布时间:2019.01.03来源:亿信华辰浏览量:122次

  • 数据质量管理趋势

    数据质量管理趋势

    进一步信息又可分为物理信息和语义信息两类,其中物理层面的信息反映基础的数据结构;语义信息属于进阶有含义的语义数据结构,反映人类的视角。……查看详情

    发布时间:2019.11.15来源:知乎浏览量:151次

  • 从主数据到数据资产,数据资产管理到底应该怎么做?

    从主数据到数据资产,数据资产管理到底应该怎么做?

    主数据和数据资产管理的定义我们已经说烂了,今天就从主数据出发,来说说怎么进行数据资产管理。主数据的问题80%是管理问题很多企业的信息部门……查看详情

    发布时间:2020.08.19来源:CDDN浏览量:137次

  • 大数据元数据管理系统有哪些功能

    大数据元数据管理系统有哪些功能

    1、元数据模型的建立,定义元数据模型,清晰展现元数据需求。2、采集:指从各种工具中,把各种类型的元数据采集进来,采集是元数据管理第一步。……查看详情

    发布时间:2021.08.17来源:亿信数据治理知识库浏览量:240次

  • 数据治理运营:团队

    数据治理运营:团队

    这是关于数据治理运作的两部分系列的第二部分。“数据治理可操作性:差距”系列的第一部分讨论了需求是如何产生的,数据……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:140次

  • 2019年的数据前景如何

    2019年的数据前景如何

    这三个与数据相关的趋势今年值得关注。 公司喜欢技术堆栈所有层的“即服务”模式,从云供应商提供的基础架构到完整的SaaS应用程序。但是……查看详情

    发布时间:2019.01.07来源:数据治理浏览量:146次

  • 企业数据治理项目如何落地?

    企业数据治理项目如何落地?

    数据治理在系统层面包括数据标准、元数据、数据质量、生命周期管理、数据安全、数据资产共六大核心模块;在管理层面需要通过数据治理组织、数据治……查看详情

    发布时间:2020.06.29来源:知乎浏览量:143次

  • 如今企业面临哪些数据湖管理挑战?

    如今企业面临哪些数据湖管理挑战?

    成功的数据治理方案涉及部署策略、标准和流程,以在整个企业中有效正确地利用高质量数据。如果你的企业具有数据湖环境,并希望从中获得高质量的分……查看详情

    发布时间:2020.04.02来源:知乎浏览量:137次

  • 经济社会数字化转型的特征事实

    经济社会数字化转型的特征事实

    联合国、世界贸易组织、经济合作和发展组织、国际货币基金组织等先后于近期发表研究报告,从整体上描述了经济社会数字化转型的特征事实。概括起来……查看详情

    发布时间:2020.10.31来源:知乎浏览量:109次

  • 区块链和AI如何帮助掌握数据管理

    区块链和AI如何帮助掌握数据管理

    主数据很容易成为企业拥有的最重要的资产之一。随着数字化的不断发展和第四次工业革命的到来,主数据的价值和主数据管理的重要性才会增长。在我们……查看详情

    发布时间:2019.07.11来源:福布斯浏览量:122次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议