数据治理运营:团队

发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:104次标签:数据治理

这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原因以及所需要的。这部分更深入地了解了构建数据治理团队,成功运营的样子以及一些关键要点。

关键组成部分:内部治理团队

数据治理是人员,流程和技术的结合。在这三个组成部分中,人员组成部分可以为运营的程度和成功贡献40-50%。因此,充分了解内部治理团队类型至关重要。除了治理团队已经成熟并具有运营治理结构的少数组织之外,其他组织中的治理团队总是属于以下五种类型之一:


  • 新手团队:该团队了解治理概念并对实施理解充满信心,但缺乏实际的实施经验。大部分由高能团队组成,他们为治理计划找时间。不幸的是,该团队缺乏建立治理实践的能力。这可能是由于信任问题或等待雇用高级官员(例如,CDO)来推进它。资金不是主要问题。
  • 休眠团队:该团队主要由一些高级利益相关者组成,他们了解治理概念,并了解在业务部门或企业级别设置和操作治理需要什么。但由于缺乏高层管理人员推动治理,因此维持了反应性治理状态。在这种类型中,资金和赋权不是一个问题。
  • 虚拟团队:由多个项目的主题专家组成的团队,为治理相关的工作做出贡献,主要是兼职。这在组织内的职能部门意识到治理需求的情况下很常见,但在企业级别没有资金和高层管理人员的支持。目标是使治理继续发展,直到触发发生。由于这是一个虚拟组织,整个组织的治理策略执行受到影响。
  • 老龄化团队:这个团队的平均年龄很高,他们对治理和实施治理的兴趣水平很低。对治理举措的抵制将清晰可见,因为它被视为会增加他们的工作量而不返回的东西。
  • 无能为力的团队:在治理概念方面,该团队中的利益相关者的成熟度非常低。主要原因是缺乏高层管理人员的培训和指导以及启动治理。话虽如此,关键是要了解这个团队是如何形成的,因为它有时会改变推荐/解决方案的动态。


上述每种类型都需要不同的操作策略。发布治理类型标识后,可以利用组织变更管理(OCM)来实施治理。例如,新手团队需要授权,虚拟团队需要物理化,无知团队需要培训和/或入职经验丰富的管理人员来指导团队前进。


数据治理在哪里成功运作?

将治理融入组织文化的组织和将自己标识为“数据公司”的组织在企业级别具有运营数据治理设置。在银行和金融服务,医疗保健和生命科学等受到严格监管的行业中,重罚似乎在唤醒高级领导层,投资和重新审视其数据战略以保持治理数据健康以避免这些罚款年度方面起着至关重要的作用。一年之后。

在零售等受到温和监管的行业中,对360客户视图的需求促使公司实施数据治理。在能源与公用事业和制造业等行业,快速周转,优化和效率的需求正在推动数据治理议程的发展。

差距

根据质量公理,


  • “不能定义的东西无法衡量;
  • 无法衡量的是无法改善的
  • 无法改善的东西最终会恶化。“


在治理方面也是如此。高层管理人员希望每3个月看到一些有形的东西。换句话说,每花费一美元的投资回报率(ROI)。因此,如果没有明确表示如何展示DG的好处,那么操作化将是一个遥远的梦想。

解决这个问题的最佳方法是从小规模开始,为每个里程碑选择正确的项目,范围和指标。详细说明,一次选择一个治理区域,比如数据质量或元数据,并在显示价值和进度时进行扩展。这将有助于降低成本,适应不断变化的优先级,并灵活应对技术中断。

重点外卖

战略定义和实施之间的步骤对于成功实施治理至关重要。大多数精心策略定义包括对人员,流程和技术组件的成熟度评估。此外,他们还根据潜在的内部团队确定了对变更影响的一些见解。如果其中任何一个不可用,这应该是第一步。仔细研究成熟度和变化影响指数应该可以高度重视可能阻碍组织运营的因素。一旦识别出可能的治理阻止者,就很容易逐一解决。


调查方法

该调查包括研究分布在银行和金融服务,保险,医疗保健,能源和公用事业,零售,技术,通信和制造领域的19个组织。这些组织处于不同的成熟度和实施进度。分析模式:调查和与主题专家的交互相结合,接近各个客户位置的数据管理。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 银行业重塑数据治理体系 助力转型升级

    银行业重塑数据治理体系 助力转型升级

    银行业金融机构要深化认识,积极主动对接国家政策,改革数据治理体系,依靠数据治理改进决策、缩减成本、降低风险、增强核心竞争力,推动银行业向……查看详情

    发布时间:2019.10.18来源:知乎浏览量:122次

  • 强大的数据治理是机器学习成功的关键

    强大的数据治理是机器学习成功的关键

    人工智能和机器学习这两个术语通常被视为同一枚硬币的两面。尽管如此,虽然ML算法增强了AI功能,并使它们能够进行更多的尖端和智能计算,但还……查看详情

    发布时间:2019.01.17来源:数据治理浏览量:121次

  • 数据治理技术措施

    数据治理技术措施

    企业构建的信息系统以满足功能应用为主,如果没有整体数据架构,应用系统就没有数据标准可参考,不可避免地会出现不同的应用系统使用不同的数据标……查看详情

    发布时间:2020.10.21来源:知乎浏览量:123次

  • 数据资产如何安全可追溯,你们应该这样做!

    数据资产如何安全可追溯,你们应该这样做!

    近年来,食品安全中提到产地的可追溯性,给许多生鲜打上了专属的身份证以便出现问题可以追根溯源。而这并不稀奇,在使用报表工具时处于数据安全考……查看详情

    发布时间:2021.03.12来源:知乎浏览量:113次

  • 如何有效的进行数据交换管理

    如何有效的进行数据交换管理

    在现代信息社会,政府、企事业单位相继建立了各自的信息管理系统,这些独立的系统创建之初没有统一的规划,彼此之间数据的存储环境和存储形式差异……查看详情

    发布时间:2020.04.23来源:知乎浏览量:127次

  • 数据治理研究述评

    数据治理研究述评

    数据治理是数据科学时代关注的研究课题,对数据治理的概念、体系、内容和应用的相关研究进行述评,以期将数据治理研究引向深入。……查看详情

    发布时间:2019.08.27来源:南京大学信息管理学院浏览量:194次

  • 数据治理:一些美好的开始

    数据治理:一些美好的开始

    数据治理增强了业务参与,共享理解,关注和协调,将日益脱节的数据环境结合在一起,并在许多EDM计划中提供数据值优化。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:117次

  • 数据治理工具那么多,如何选择适合自己企业的呢?

    数据治理工具那么多,如何选择适合自己企业的呢?

    随着互联网技术的不断发展,人们获取、收集信息的渠道也越来越多样化,各种搜索引擎、通讯工具、社交网站等普及应用,使得数据信息呈迅速增长趋势……查看详情

    发布时间:2019.07.26来源:知乎浏览量:110次

  • 大型传统企业如何利用数据管理系统把握好业务和数据的关系,逐步实现智能化转型?

    大型传统企业如何利用数据管理系统把握好业务和数据的关系,逐步实现智能化转型?

    关于“数据治理”的定义各大研究学派给出的都概念不尽相同,但看了这么多不同的说法小亿翻译成人话,其实就是要搞清楚:数据治理治什么?谁来治?……查看详情

    发布时间:2020.08.31来源:亿信华辰浏览量:91次

  • 2019年十大数据治理预测

    2019年十大数据治理预测

    去年见证了数据治理的觉醒 - 或者正如“ 华尔街日报” 所说的那样,“全球数据治理计算”。数据引人瞩目,从而导致创伤 - 从Face……查看详情

    发布时间:2018.12.19来源:亿信华辰浏览量:138次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议