数据治理为什么成为企业必备?

发布时间:2020.07.29来源:CSDN浏览量:154次标签:数据治理

基本概念

什么是数据治理?

答:又叫”数据管控”。引用《DAMA 数据管理知识体系指南》一书给出的定义:数据治理是对数据资产管理行使权力和控制的活动集合(规划、监控和执行)。数据治理职能指导其他数据管理职能如何执行。

数据元:通过名称、格式、长度、定义值域等一系列属性描述的数据单元。

代码集:数据元的取值范围。

数据元类目:按照标准规范对数据元进行分类。

元数据:对数据资源的描述性信息(数据的数据)。例如数据表的字段就是描述这些数据表中数据的元数据。

元模型:定义各种元数据的结构以及元数据间的关系。

概述

元数据(Metadata) 使得用户可以掌握数据的历史情况,如数据从哪里来?流通时间有多长?更新频率是多大?数据元素的含义是什么?对它已经进行了哪些计算、转换和筛选等等。在需求不确定情况下,在瞬间万变的商业环境下,元数据可以更好的支持需求的变化,降低项目风险。

元数据按照适用场景可有以下两种区分:

  • 技术元数据—-从开发的角度描述的元数据,应用于开发、管理和维护数据治理平台
  • 业务元数据—-从业务的角度描述的元数据,提供良好的语义层定义,更便于业务人员理解。

元数据贯彻于建立数据仓库的全过程,不仅仅只是TL过程。

元数据标准 不统一,各厂商、各软件采用不同的元数据标准。业界需要统一的标准,以便各个软件系统之间可以相互交换元数据。CWG 1.0 (Common Warehouse Metamodel Version 1.0) 就是一种,其定义一个描述数据源、数据目的、转换、分析的元数据框架,以及定义建立和管理数据仓库的过程和操作,提供使用信息的继承。目前宣布支持CWM的厂商包括:IBM、Oracle、Hyperion、Dimension EDI、Genesis IONA、HP、NCR和Unisys等。

CWM基于3个工业标准:

  • UML - Unified Modeling Language,OMG建模标准;
  • MOF - Meta Object Facility,OMG建立元模型和模型库的标准,提供在异构环境下的数据交换的接口;
  • XMI - XML Metadata Interchange,OMG元数据交换标准。

数据分类

对每类数据进行治理时,关注点、方法以及效果都不同,需要区别对待。

数据分类 描述
主数据(Master Data) 关于业务实体的数据
事务数据(Transactional Data) 业务运营过程中的内部或者外部事件或者交易记录
参考数据(Reference Data) 用于将其他数据进行分类或者目录整编的数据
元数据(Metadata) 描述数据的数据
统计分析数据(Analytical Data) 指对企业业务活动进行统计分析的数据

主数据 关注的是”人”和”物”,主数据管理是数据治理领域一个专门的话题,其主要目的是对关键业务实体(如员工、客户、产品、供应商等)建立统一视图,让客观世界里本是同一个人或物,在数据世界里也能做到唯一识别,而不是在不同系统、不同业务中成为不同的人或物。

事务数据 关注的是”事”,事务数据没有形成单独的数据治理领域,由于事务数据是BI分析的基础,因此往往在数据质量管理中重点关注。

参考数据 是更细粒度的数据,是对”人”“事”“物”的某些属性进行规范性描述的,对参考数据的管理一般会与主数据管理同时进行,或与BI数据质量管理同时进行,因为指标维度和维值直接影响到BI数据质量。

元数据 是一个包罗万象的概念,其本质是为数据提供描述,所以任何数据都有元数据。数据治理领域的元数据,更多是指BI、数据仓库这个范畴内的元数据(国际上有Common Warehouse Meta-model规范),此外还有信息资源管理的元数据(如Dublin core协议)、地理信息元数据、气象元数据等等。正因为如此广泛,也造成了从业者对其有极高的预期以及实践后的极大失落。

现在极少谈”元数据”,而是谈”数据定义”,谈数据必谈定义,但却又不将其作为专门一类数据来管理,在数据治理领域单独做元数据管理,收效甚微。 主要原因有两点:

  1. 数据生产与数据管理脱节,元数据管理更多是在数据生产的事后进行元数据收集和应用展现,对数据生产起到的管控作用极小;
  2. 工具自身问题:虽然很多工具都号称支持CWM规范,但元数据自动获取始终是技术难题,而且对于存储过程、自定义脚本很难自动解析和获取,就无法准确、完整展现细节的数据处理过程。

统计分析数据 ,目前BI系统建设的主要作用就是做各种指标和报表的计算和展示。统计分析数据往往是数据治理的重点,统计分析数据的数据流分析、统计分析数据的数值的波动性、平衡性监控,几乎是各个企业做数据治理的必备应用。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据虚拟化 实现大数据的有效管理

    数据虚拟化 实现大数据的有效管理

    关于在石油天然气的钻探和出产过程中所发生的数据的价值,并没有太多的争议。尽管数字化油田运动的最初意图,是将与设备的监测和维护相关的使命完……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:127次

  • 为什么数据治理对企业这么重要?

    为什么数据治理对企业这么重要?

    现在很多企业都有自己的数据治理计划,从而更便捷的管理企业,那么所谓的数据治理其实就是我们常说的数据分析,将零散的数据汇总起来,进行统一的……查看详情

    发布时间:2019.07.17来源:知乎浏览量:121次

  • 政府如何进行数据治理

    政府如何进行数据治理

    政府掌握全社会重要核心的、高价值的数据,如何通过有效管理,进行共享开放与协同,释放背后价值,赋能管理、服务决策,推动治理能力的提升对于我……查看详情

    发布时间:2021.08.30来源:亿信华辰浏览量:205次

  • 数据中台和传统的数据系统出发点不一样

    数据中台和传统的数据系统出发点不一样

    原来的数据平台也好,数据湖也好,数据仓库也好,它们的出发点很多时候有局限性,应该说更是一个支撑性的技术系统,即一定要去考虑我先有什么数据……查看详情

    发布时间:2021.01.23来源:知乎浏览量:106次

  • 什么是数据孤岛?为什么要消除数据孤岛?

    什么是数据孤岛?为什么要消除数据孤岛?

    数据孤岛通常具有负面含义。它描述了孤立的数据岛,数据孤岛通常存在以下问题:1.由于代码较旧或不兼容而无法以编程方式与其他系统一起工作2.……查看详情

    发布时间:2021.05.28来源:亿信数据治理知识库浏览量:344次

  • 什么是数据治理?

    什么是数据治理?

    关于数据治理,我需要了解什么?数据治理要求组织了解并评估其数据必须满足的法规要求,法律要求和业务最佳实践,建立规则,并采用自动化和人工流……查看详情

    发布时间:2018.11.16来源:互联网浏览量:129次

  • 数据治理过程中核心数据界定怎么破?

    数据治理过程中核心数据界定怎么破?

    数据治理过程中,在我们费了九牛二虎之力盘点出企业当前数据资产的家当,形成了数据资产的清单后,同时也会列明这个业务域的核心数据实体,这就碰……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:102次

  • 理解数据治理

    理解数据治理

    专注于商业智能(bi)市场,深入了解组织在数据管理策略方面所面临的一些共同挑战。……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:108次

  • 有效数据治理的6大原则

    有效数据治理的6大原则

    如果你常常对数据准确性而烦恼,大部分时间都用于处理数据而不是对业务进行思考分析的话,那么你需要好好对数据进行治理了。……查看详情

    发布时间:2019.10.17来源:知乎浏览量:107次

  • 数据集成的原理

    数据集成的原理

    在Experian Data Quality上多次使用这个类比,但这仅仅是因为它在引用数据标准化时非常有意义。 数据标准化只是构建……查看详情

    发布时间:2018.12.29来源:数据治理浏览量:114次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议