数据质量包括那些方面

发布时间:2020.04.09来源:百度浏览量:236次标签:数据治理

数据质量包括数据质量控制和数据治理
数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。有了普遍深入的数据质量,企业在任何时候都可以信任满足所有需求的所有数据。

一个战略性和系统性的方法能帮助企业正确研究企业的数据质量项目,业务部门与 IT 部门的相关人员将各自具有明确角色和责任,配备正确的技术和工具,以应对数据质量控制的挑战。

扩展资料:
控制方法:
1、探查数据内容、结构和异常
第一步是探查数据以发现和评估数据的内容、结构和异常。通过探查,可以识别数据的优势和弱势,帮助企业确定项目计划。一个关键目标就是明确指出数据错误和问题,例如将会给业务流程带来威胁的不一致和冗余。

2、建立数据质量度量并明确目标
Informatica的数据质量解决方案为业务人员和IT人员提供了一个共同的平台建立和完善度量标准,用户可以在数据质量记分卡中跟踪度量标准的达标情况,并通过电子邮件发送URL来与相关人员随时进行共享。

3、设计和实施数据质量业务规则
明确企业的数据质量规则,即,可重复使用的业务逻辑,管理如何清洗数据和解析用于支持目标应用字段和数据。业务部门和IT部门通过使用基于角色的功能,一同设计、测试、完善和实施数据质量业务规则,以达成最好的结果。

4、将数据质量规则构建到数据集成过程中
Informatica Data Quality支持普遍深入的数据质量控制,使用户可以从扩展型企业中的任何位置跨任何数量的应用程序、在一个基于服务的架构中作为一项服务来执行业务规则。

数据质量服务由可集中管理、独立于应用程序并可重复使用的业务规则构成,可用来执行探查、清洗、标准化、名称与地址匹配以及监测。

5、检查异常并完善规则
在执行数据质量流程后,大多数记录将会被清洗和标准化,并达到企业所设定的数据质量目标。然而,无可避免,仍会存在一些没有被清洗的劣质数据,此时则需要完善控制数据质量的业务规则。Informatica Data Quality可捕获和突显数据质量异常和异常值,以便更进一步的探查和分析。

6、对照目标,监测数据质量
数据质量控制不应为一次性的“边设边忘”活动。相对目标和在整个业务应用中持续监测和管理数据质量对于保持和改进高水平的数据质量性能而言是至关重要的。

Informatica Data Quality包括一个记分卡工具,而仪表板和报告选项则具备更为广泛的功能,可进行动态报告以及以更具可视化的方式呈现。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据资产管理实践白皮书(2.0版)

    数据资产管理实践白皮书(2.0版)

    本白皮书版权属于中国信息通信研究院云计算与大数 据研究所,并受法律保护。转载、摘编或利用其它方式使用 本白皮书文字或者观点的,应注明……查看详情

    发布时间:2019.09.02来源:中国信息通信研究院云计算与大数据研究所浏览量:470次

  • 灵活的分析数据生命周期?

    灵活的分析数据生命周期?

    受监管实验室数据完整性指南的要求之一是数据生命周期,涵盖监管记录的生死。数据生命周期在最近的MHRA数据完整性指南中定义为“从生成和记录……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:173次

  • 数据治理的全过程

    数据治理的全过程

    数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据……查看详情

    发布时间:2019.08.07来源:CSDN浏览量:115次

  • 关注:2019年大数据的10大发展趋势

    关注:2019年大数据的10大发展趋势

    如今,人们寻求获得更多的数据有着充分的理由,因为数据分析推动了数字创新。然而,将这些庞大的数据集转化为可操作的洞察力仍然是一个难题。而那……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:114次

  • 数据治理活跃在企业的方方面面

    数据治理活跃在企业的方方面面

    我们都知道数据治理存在感知问题(温和地说)。真正的数据治理是对任何和所有数据管理活动的控制和支持。但是,数据领导者常常关注控制角度或从技……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:104次

  • 为什么要进行数据交换

    为什么要进行数据交换

    企业大量的IT投资建立了众多的信息系统,但是随着信息系统的增加,各自孤立工作的信息系统将会造成大量的冗余数据和业务人员的重复劳动。企业急……查看详情

    发布时间:2020.08.10来源:知乎浏览量:129次

  • 业务词汇表和元数据:数据治理和词汇表准备

    业务词汇表和元数据:数据治理和词汇表准备

    我经常被问到“我们如何捕获数据词汇表资产”和“我们是否已准备好与数据管理员合作?”我的回答始终是:如果您能说明数据治理计划的目标并拥有赞……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:140次

  • 数据治理对于大数据分析势在必行

    数据治理对于大数据分析势在必行

    数据被定义为“收集在一起以供参考或分析的事实和统计数据。”信息是“关于某事物或某人提供或了解的事实,”这是一个至关重要的信息。“信息治理……查看详情

    发布时间:2018.11.21来源:浏览量:122次

  • 如何避免先污染后治理,浅谈数据标准管理的应用

    如何避免先污染后治理,浅谈数据标准管理的应用

    数据质量的提升作为数据治理环节中非常重要的一环,我们的确需要重视,但是我们知其然,还要知其所以然,从数据质量问题出发,我们还得知道到底为……查看详情

    发布时间:2019.12.13来源:亿信华辰浏览量:125次

  • 用大数据守护绿水青山,铸就“智慧环保”

    用大数据守护绿水青山,铸就“智慧环保”

    为了打破数据壁垒,基于亿信华辰的睿治数据治理平台和实时大数据平台PetaBase-s搭建A市生态环境大数据管理平台。……查看详情

    发布时间:2021.05.07来源:亿信华辰浏览量:189次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议