数据太多、太乱、太杂?你需要这样一套数据治理平台

发布时间:2019.11.20来源:知乎浏览量:160次标签:数据治理

当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统已经成为组织变革重组的阻力,这也是从数据层面打通各个组织单元、实现业务单元快速重组的最根本的需求来源。

数据时代,任何一家企业的数据都非常重要,企业的方方面面都需要相应的数据支持,通过对相关数据的收集、分析、处理、预判,企业可以对业务状况、管理工作等方面有精准的了解和掌握,从而做出合理的决策。如果没有数据管理的能力,那么这家企业也就在慢慢走向死亡。



数据治理真的很重要?

智能是基于数据的,而数据又是基于大量人工与工程努力的,所以人工智能还有相当一部分「人工」。数据收集需要人工确定数据源,或者手动写爬虫;数据处理则需要观察数据,并手动写整个清洗过程;数据标注则要根据具体业务,看看怎样给数据打标签才好。

这些过程都会耗费大量精力,有时候如果处理路径不明确,甚至会导致重复或冗余的人力工作。因此事先确定一个具体的处理流程,明确数据该怎样治理、算力该怎样分配、模型又该如何部署,那么整个开发过程能减少很多人力成本与工程负担。

数据治理的本质是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利用进行评估、指导和监督的过程,通过提供数据服务创造价值。数据治理可对数据战略资产进行管理,通过从收集汇聚到处理应用的一套治理机制,提高数据质量,实现数据共享和价值最大化。

如果我们想降低数据治理的成本,最优地调配数据、模型及算力,那么就需要一个成熟数据治理平台。如下我们重点介绍亿信华辰睿治数据治理平台。

睿治数据治理平台融合元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大产品,每个模块功能可互相调用,全程可视化操作,打通数据治理各个环节,同时提供各个产品模块任意组合,快速解决企业不同的数据治理场景。



亿信睿治数据治理的整体架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据与数据治理两个基本概念

    数据与数据治理两个基本概念

    数据治理这项基础数据能力的重要性越来越多突出。2017年4月22日,中国数据标准化及治理奖实践奖的现场评审在清华大学成功举行。……查看详情

    发布时间:2018.11.30来源:御数坊浏览量:147次

  • 数据治理“起航” 推动银行业高质量发展

    数据治理“起航” 推动银行业高质量发展

    银行业金融机构数据治理提上日程。近日,银监会发布《银行业金融机构数据治理指引(征求意见稿)》(以下简称《指引》),要求银行业金融机构将数……查看详情

    发布时间:2019.02.21来源:和讯网浏览量:172次

  • 形成,风暴,规范,表演 - 实现数据治理

    形成,风暴,规范,表演 - 实现数据治理

    启动数据治理计划是整个组织需要参与的重要任务。来自数据治理团队的这些见解已经在他们的旅程中取得了一些进展,这突出了团队内部和整个组织内的……查看详情

    发布时间:2019.02.25来源:亿信华辰浏览量:166次

  • 数据治理成熟度评估

    数据治理成熟度评估

    数据治理成熟度反映了组织进行数据治理所具备的条件和水平,包括元数据管理、数据质量管理、业务流程整合、主数据管理和信息生命周期管理。……查看详情

    发布时间:2020.07.17来源:知乎浏览量:435次

  • 数据治理带给企业的6个惊喜

    数据治理带给企业的6个惊喜

    数据治理实际是一把双刃剑。一方面,法律法规的强制规定能立即引起客户对数据治理的重视。另一方面,为了达到合规,很多企业在实际操作中只会做到……查看详情

    发布时间:2019.11.22来源:知乎浏览量:140次

  • 政务大数据治理的本质是什么,包含哪些建设内容?

    政务大数据治理的本质是什么,包含哪些建设内容?

    为了让全国各地的人民群众,都可以无障碍地享受到祖国繁荣发展与社会全面进步带来的生活水平提升,我国已经在多个地区的一些职能机构中渗透和运行……查看详情

    发布时间:2021.05.21来源:亿信数据治理知识库浏览量:290次

  • 数据治理——银行将被如何规范?

    数据治理——银行将被如何规范?

    我们认为,此番对数据治理的指引,未来可能会被其他金融监管机构作为范本,约束互联网金融或其他业态的数据治理行为,因此,具有学习和研究价值。……查看详情

    发布时间:2019.01.18来源:亿信华辰浏览量:146次

  • 数据架构和数据治理的速赢

    数据架构和数据治理的速赢

    Burbank根据DAMA国际数据管理知识体系(DMBoK2)定义数据架构为:数据架构是数据管理的基础。因为大多数组织拥有个人难以想象的……查看详情

    发布时间:2020.11.08来源:知乎浏览量:237次

  • 数据质量是什么?控制数据质量的三个方法都在这

    数据质量是什么?控制数据质量的三个方法都在这

    目前有三种基本方法可以实现真正的数据质量。它们有助于提供可用于收集有用的商业情报和做出正确决策的准确数据。这些开发和维护数据质量的方法都……查看详情

    发布时间:2021.08.19来源:亿信华辰数据治理知识库浏览量:199次

  • 数据资产管理“管”什么

    数据资产管理“管”什么

    目前,数据资产管理已经形成了一套科学的管理架构体系,其体系架构如下图所示,主要包含9个活动职能和2个保障措施,9个活动职能指的是数据标准……查看详情

    发布时间:2020.09.11来源:知乎浏览量:127次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议