数据太多、太乱、太杂?你需要这样一套数据治理平台

发布时间:2019.11.20来源:知乎浏览量:122次标签:数据治理

当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统已经成为组织变革重组的阻力,这也是从数据层面打通各个组织单元、实现业务单元快速重组的最根本的需求来源。

数据时代,任何一家企业的数据都非常重要,企业的方方面面都需要相应的数据支持,通过对相关数据的收集、分析、处理、预判,企业可以对业务状况、管理工作等方面有精准的了解和掌握,从而做出合理的决策。如果没有数据管理的能力,那么这家企业也就在慢慢走向死亡。



数据治理真的很重要?

智能是基于数据的,而数据又是基于大量人工与工程努力的,所以人工智能还有相当一部分「人工」。数据收集需要人工确定数据源,或者手动写爬虫;数据处理则需要观察数据,并手动写整个清洗过程;数据标注则要根据具体业务,看看怎样给数据打标签才好。

这些过程都会耗费大量精力,有时候如果处理路径不明确,甚至会导致重复或冗余的人力工作。因此事先确定一个具体的处理流程,明确数据该怎样治理、算力该怎样分配、模型又该如何部署,那么整个开发过程能减少很多人力成本与工程负担。

数据治理的本质是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利用进行评估、指导和监督的过程,通过提供数据服务创造价值。数据治理可对数据战略资产进行管理,通过从收集汇聚到处理应用的一套治理机制,提高数据质量,实现数据共享和价值最大化。

如果我们想降低数据治理的成本,最优地调配数据、模型及算力,那么就需要一个成熟数据治理平台。如下我们重点介绍亿信华辰睿治数据治理平台。

睿治数据治理平台融合元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大产品,每个模块功能可互相调用,全程可视化操作,打通数据治理各个环节,同时提供各个产品模块任意组合,快速解决企业不同的数据治理场景。



亿信睿治数据治理的整体架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 统一数据交换平台解决方案

    统一数据交换平台解决方案

    随着我国信息化工程建设的迅速发展,各政府部门及各大企业内部都建立了各自的信息处理系统。这些信息系统往往是在不同时期、由不同厂商、在不同平……查看详情

    发布时间:2020.08.07来源:知乎浏览量:141次

  • 数据治理与数据质量的关系

    数据治理与数据质量的关系

    单纯从数据层面来看,数据体系包括治理、管理和应用三个部分。治理是负责解决人与人之间的事,管理负责各个职能领域,应用则是价值的实现。不讨论……查看详情

    发布时间:2018.11.29来源:知乎浏览量:108次

  • 为什么数据治理会带来数据驱动的成功

    为什么数据治理会带来数据驱动的成功

    通过寻找创造价值和改进执行的新方法,各种形式和规模的组织都在积极地采用数据驱动的方法,这些方法可以通过分析的进步来实现。……查看详情

    发布时间:2019.01.26来源:亿信华辰浏览量:127次

  • 全球数据质量和数据治理解决方案市场

    全球数据质量和数据治理解决方案市场

    在企业数据管理生态系统中,数据质量是一个广义的术语,指的是数据和/或过程的质量,完整性和一致性等。数据质量还意味着数据准确性和一致性的程……查看详情

    发布时间:2019.07.11来源:知乎浏览量:91次

  • 数据治理和当今的新数据目标

    数据治理和当今的新数据目标

    尽管实施全面的治理计划似乎令人生畏,但拥有有效数据治理策略和MDM解决方案的公司不断寻找新方法从数据中提取价值。……查看详情

    发布时间:2019.03.25来源:亿信华辰浏览量:110次

  • 企业数据标准管理价值总结

    企业数据标准管理价值总结

    一个数据一般有业务属性、技术属性和管理属性组成,例如:数据项的业务定义、业务规则、质量规则为该数据的业务属性;数据项的名称、编码、类型、……查看详情

    发布时间:2020.09.18来源:知乎浏览量:115次

  • 走向人工智能治理的趋势

    走向人工智能治理的趋势

    这是人工智能(AI)驱动的自动化和自动机器的时代。自我改进,自我复制,自主智能机器日益普及和迅速扩大的潜力刺激了网络空间,地球空间和空间……查看详情

    发布时间:2019.03.13来源:亿信华辰浏览量:89次

  • 零售商的数据治理势在必行

    零售商的数据治理势在必行

    最好的零售商擅长推销商品。在顶级的实体和电子商务商店,产品组织巧妙,布置精美,色彩鲜明,使客户可以轻松找到他们想要的东西。做得好,商品推……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:113次

  • 良好数据治理的6步路线图

    良好数据治理的6步路线图

    今年早些时候,我们发现许多数据科学家将大部分时间花在“数据管理员”上 - 即分类和清理数据,而不是将其分析为可操作的见解。……查看详情

    发布时间:2019.04.03来源:亿信华辰浏览量:185次

  • 数据建模在数据治理中的作用

    数据建模在数据治理中的作用

    在过去的9个月里,erwin建模团队一直在忙着从山顶呼喊我们进入数据治理领域。2015年4月,我们发布了新版的建模门户网站erwin®W……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:136次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议