数据太多、太乱、太杂?你需要这样一套数据治理平台

发布时间:2019.11.20来源:知乎浏览量:162次标签:数据治理

当前,企业变革已经成为企业适应剧烈变化的市场环境、实现长期发展的必经之路。然而,过去为组织带来工作效率提升的烟囱式的孤岛式的业务系统已经成为组织变革重组的阻力,这也是从数据层面打通各个组织单元、实现业务单元快速重组的最根本的需求来源。

数据时代,任何一家企业的数据都非常重要,企业的方方面面都需要相应的数据支持,通过对相关数据的收集、分析、处理、预判,企业可以对业务状况、管理工作等方面有精准的了解和掌握,从而做出合理的决策。如果没有数据管理的能力,那么这家企业也就在慢慢走向死亡。



数据治理真的很重要?

智能是基于数据的,而数据又是基于大量人工与工程努力的,所以人工智能还有相当一部分「人工」。数据收集需要人工确定数据源,或者手动写爬虫;数据处理则需要观察数据,并手动写整个清洗过程;数据标注则要根据具体业务,看看怎样给数据打标签才好。

这些过程都会耗费大量精力,有时候如果处理路径不明确,甚至会导致重复或冗余的人力工作。因此事先确定一个具体的处理流程,明确数据该怎样治理、算力该怎样分配、模型又该如何部署,那么整个开发过程能减少很多人力成本与工程负担。

数据治理的本质是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利用进行评估、指导和监督的过程,通过提供数据服务创造价值。数据治理可对数据战略资产进行管理,通过从收集汇聚到处理应用的一套治理机制,提高数据质量,实现数据共享和价值最大化。

如果我们想降低数据治理的成本,最优地调配数据、模型及算力,那么就需要一个成熟数据治理平台。如下我们重点介绍亿信华辰睿治数据治理平台。

睿治数据治理平台融合元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大产品,每个模块功能可互相调用,全程可视化操作,打通数据治理各个环节,同时提供各个产品模块任意组合,快速解决企业不同的数据治理场景。



亿信睿治数据治理的整体架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理委员会:指导原则

    数据治理委员会:指导原则

    数据所有权 指定义与特定数据集相关的各种责任级别。讨论谁负责特定的数据任务已经使我们机构的数据维护和准确性变得更加简单。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:147次

  • 数据标准与主数据、元数据、数据质量的关系

    数据标准与主数据、元数据、数据质量的关系

    数据标准与主数据、元数据、数据质量的关系,数据治理项目的根本诉求在于提升数据质量。……查看详情

    发布时间:2020.09.24来源:知乎浏览量:356次

  • 数据治理领军企业在中国

    数据治理领军企业在中国

    中国在大数据领域做得不错。中国人口多,数据就多,数据多就会呼唤更先进的数据处理技术,呼唤更多的数据应用场景,这是中国在数据方面得天独厚的……查看详情

    发布时间:2020.07.31来源:知乎浏览量:120次

  • 一文透露银行业的数据治理该不该做,又怎么做?

    一文透露银行业的数据治理该不该做,又怎么做?

    小宋最近同学会,一个大学同学就职银行信息科技部门,听说小宋也在一家大数据公司便拉起小宋的手要和她好好掰扯掰扯一下银行业的数据治理了。银行……查看详情

    发布时间:2020.07.29来源:今日头条浏览量:137次

  • 企业怎样保护业务数据的质量

    企业怎样保护业务数据的质量

    企业内容的质量主要从以下三个方面体现:技术人员设计系统时逻辑严谨,符合规范;业务人员通过统一的培训,录入数据时有统一的规范;管理人员发现……查看详情

    发布时间:2019.09.10来源:知乎浏览量:154次

  • 数据湖与数据仓库之间的桥梁

    数据湖与数据仓库之间的桥梁

    数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相……查看详情

    发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:165次

  • 数据治理与数据管理:有什么区别?

    数据治理与数据管理:有什么区别?

    如果今天有任何定义成功企业的东西,那就是公司数据的成功理解,使用和策略。了解您的数据并确定如何实施它会带来一系列问题,包括用户和利益相关……查看详情

    发布时间:2018.11.13来源:克里希基德浏览量:134次

  • 新的独立全球分析师研究强调数据治理挑战

    新的独立全球分析师研究强调数据治理挑战

    佛罗里达州奥兰多,10月14日-交付 分析的未来,Pentaho的,一个日立数据系统公司今天宣布,由Forrester咨询公司进行的2……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:145次

  • 数据治理过程中核心数据界定怎么破?

    数据治理过程中核心数据界定怎么破?

    数据治理过程中,在我们费了九牛二虎之力盘点出企业当前数据资产的家当,形成了数据资产的清单后,同时也会列明这个业务域的核心数据实体,这就碰……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:144次

  • 企业级数据资产管理——亿信华辰

    企业级数据资产管理——亿信华辰

    数据成为资产,已经是行业共识,甚至有人建议将数据计入资产负债表。但如果对比实物资产,对数据资产的管理,还处于非常原始的阶段。……查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:188次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议