云,基础设施现代化和数据治理定义了2019年的IT成功

发布时间:2019.03.25来源:亿信华辰浏览量:150次标签:数据治理


随着新兴数据技术的优先事项和采用不断升级,IT正在发生变化,挑战也在不断增加。

新的创新中心IT如何应对这种情况?

根据Syncsort的调查,2019年确定的顶级IT计划受访者是云/混合计算(46%),现代化基础设施(38%)和数据治理(32%),其次是高级/预测分析(25%)。这些举措是IT团队处理肩负新职责的最佳方式。或许,令人惊讶的是,自动化不包含在此列表中。

IT行业在最大的挑战中分裂,最大的群体选择技能/人员短缺(38%)。数据治理(33%),使数据更容易获取(33%),保持数据最新(30%)和预算约束(30%)紧随其后。

IT部门正在努力解决数据交付和价值问题

•只有9%的受访者称其组织“非常有效”地从数据中获取价值,而近一半(48%)的受访者表示“有效”。
      •使整个企业的用户可以访问数据是第三大被引用的IT挑战,只有一半(50%)称其组织在向业务用户提供数据洞察方面“非常有效”或“有效” 
      •尽管如此,“改进了访问权限”数据“在业务计划清单中排名第四IT表明他们将在2019年支持,增加运营/劳动力效率(48%),改善客户体验(46%)和降低成本(42%)。

组织仍在使基础设施现代化并建立数据湖泊

•现代化基础设施是2019年第二大优先级IT计划,38%的受访者选择了该计划。它被确定为目前提供商业利益的顶级技术,被调查者中最大的25%选择。
•只有9%的数据湖成熟采用(5年以上),而17%正在生产(2 - 4年)。有24%的人提前采用(不到2年),23%仍处于研究/评估阶段。
•构建数据湖泊的大多数人正在从他们的企业数据仓库中填充(52%),使用来自RDBMS(37%),NoSQL数据库(24%),第三方提供商(23%)的数据的百分比较低和云存储库(21%)。
•最感兴趣的数据湖用例包括高级/预测分析(50%),实时分析(42%),运营分析(41%),数据发现和可视化(39%)。

在云实施成熟的同时,公司仍在评估新兴技术

•云计算/混合计算是2019年的首要IT计划,46%的受访者选择了该计划; 其中39%已处于早期采用阶段,27%的产量和10%的成熟采用率。

•区块链(34%),物联网(32%),人工智能(30%)和流媒体数据技术(24%)的受访者数仍然最多,仍处于研究/评估阶段,但早期采用者表现出对这些技术的吸引力。
     •对于投资区块链的组织,20%的企业提前采用,7%投入生产,5%采用成熟采用。
     •对于投资于人工智能/机器学习的组织,20%的人处于早期采用阶段,12%的人处于生产阶段,7%的人处于成熟阶段。
     •对于投资流媒体数据技术的组织,22%的人处于早期采用阶段,15%处于生产阶段,9%处于成熟采用阶段。

Syncsort首席技术官TendüYoğurtçu表示:“今天生产的数据非常多,而且正在创造大量新的机遇和挑战。”

“我们将云和混合云视为主流趋势,这与我们2018年的云调查结果一致。随着数据转移的严重性,组织正在尝试利用云的弹性,并尽可能快地分析和将可信数据传递到应用程序管道中。这些是改善数据可访问性和利用机器学习和流分析等新兴技术的先驱,这些技术将有助于从数据中获取更多价值。“



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理到底在哪里治?

    数据治理到底在哪里治?

    关于数据中台到底应该在中台治理还是应该在后台治理,数据治理到底应该放在中台,还是后台,我个人的理解是:小数据标准化治理靠人工、大数据预测……查看详情

    发布时间:2020.07.07来源:知乎浏览量:140次

  • 敏捷/精益数据治理最佳实践

    敏捷/精益数据治理最佳实践

    数据治理 的目标 是确保组织内的质量,可用性,完整性,安全性和可用性。你对此的看法取决于你。许多传统的数据治理方法似乎在实践中都很困难,……查看详情

    发布时间:2018.12.18来源:数据治理浏览量:133次

  • 多措并举提升银行业数据治理能力

    多措并举提升银行业数据治理能力

    数据治理是银行业高质量发展的必由之路,当前银行业的数字化转型面临一些挑战和不足,要从建立数据治理架构、统一数据标准、加强数据分析应用等方……查看详情

    发布时间:2019.11.29来源:知乎浏览量:171次

  • 灵活的分析数据生命周期?

    灵活的分析数据生命周期?

    受监管实验室数据完整性指南的要求之一是数据生命周期,涵盖监管记录的生死。数据生命周期在最近的MHRA数据完整性指南中定义为“从生成和记录……查看详情

    发布时间:2018.12.27来源:数据治理浏览量:174次

  • 大数据治理需要具备哪些能力和关键技术?

    大数据治理需要具备哪些能力和关键技术?

    在企业数据建设过程中,大数据治理受到越来越多的重视。从企业数据资产管理和提升数据质量,到自服务和智能化的数据应用,大数据治理的内容在不断……查看详情

    发布时间:2019.11.22来源:CSDN浏览量:227次

  • 数据治理如何解决数据多、杂、乱、差问题?

    数据治理如何解决数据多、杂、乱、差问题?

    许多大数据公司在过去一段时间都得到了较好的发展,但由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理……查看详情

    发布时间:2022.02.21来源:小亿浏览量:364次

  • 数据治理理论

    数据治理理论

    数据治理是对数据资产的管理行使权力和控制的活劢集合(规划、监控和执行)。数据治理职能指导其他数据管理职能如何执行。……查看详情

    发布时间:2019.08.27来源:知乎浏览量:323次

  • 浅谈数据质量管理

    浅谈数据质量管理

    随着互联网及数字化技术的飞速发展,我们生活在一个数字化转型的时代,各种数字化正在实实在在的改变着企业的日常运营,以及我们每个人的衣食住行……查看详情

    发布时间:2019.07.26来源:知乎浏览量:185次

  • 当今困扰企业的三个最常见的数据问题

    当今困扰企业的三个最常见的数据问题

    各组织都在发生数据危机。虽然存在缺陷,但传统的数据管理方法(ETL和MDM)运行良好,因此可以产生一些数据感。但是数据收集的增长速度远远……查看详情

    发布时间:2019.02.13来源:企业浏览量:140次

  • 银行业金融机构数据治理指引

    银行业金融机构数据治理指引

    为指导银行业金融机构加强数据治理,提高数据质量,发挥数据价值,提升经营管理能力,根据《中华人民共和国银行业监督管理法》等法律法规,制定本……查看详情

    发布时间:2019.08.08来源:CSDN浏览量:320次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议