企业数据治理所面临的挑战

发布时间:2019.10.31来源:知乎浏览量:138次标签:数据治理

每年随着数据量的增长,大数据平台需要投资扩容,但大量的存量应用依赖的数据也在同步增长,因此也需要扩容,当然这份冗余的数据会越来越大。

因此,所以能实施一次数据治理,往往是数据的问题已经在公司层面显性化的暴露出来,在降本增效这个大背景下,很多公司是有数据治理的驱动力的,毕竟节省的是真金白银。

现实中,我们大量的数据治理活动都是小组级、部门级的,跟数据产品,数据变现,智慧运营这些工作相比,重要程度实际是偏低的。

由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理在现在得以被重视的重要原因。在业务 IT 化的过程中,企业通过第三方厂商、自研等方式构建多种数据系统,采用多种系统中的数据化治理,是实现数据效能、数据驱动业务的关键步骤。

早期,企业用信息技术去构建业务流,而现在,我们试图用信息技术,特别是互联网行业中的一些大数据处理以及分布式处理技术构建数据流,但在构建过程中,过多强调技术本身而忽视了对数据的治理。

数据治理是整体性问题,并非仅是技术问题,市面上数不胜数的商业组件可以解决如何对数据进行存储、查询等问题,但是在实际的业务情况下对于数据治理这样一个系统性工程,目前却并无现成的产品或技术可以直接解决。

构建数据流的过程,很大意义上是为了解决分布在 IT 系统里各个不同子系统之间的数据孤岛问题,用一条完整的数据流将不同子系统之间的数据孤岛打通,同时应用于不同的应用场景,这个打通的过程,就是某种意义上的数据治理。这也反映了我之前尤为推崇的一个观点——构建数据仓库本身就是一个数据治理的过程。

另外,对于数据的本质,我一直推崇如下两个定义,第一“信息是用来消除不确定性的”,第二“大数据的本质,就是用信息来消除不确定性”。同样,对于数据驱动在业务决策和产品智能两大方面的应用,也都将建立在数据治理的基础上才有意义。

睿治数据治理平台是亿信华辰完全自主研发的、开创性的、一站式综合数据治理整体解决方案。睿治是全国唯一实现了数据治理场景全覆盖的突破性产品,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,以创新的方式保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,全面为客户量身打造符合自身特征的数据治理体系。

睿治始终站在国内顶尖梯队,广泛应用了MQ、分布式计算、zookeeper等最新技术。同时引领国内行业发展趋势:

1、数据质量自动探查,内置常规数理统计算法支持绑定机器学习算法;

2、数据关系智能构建,基于存储过程、sql、数据库定义,自动理解数据之间的关系;

3、资产目录主动感知,活化更新等先进技术,确保成为当之无愧的领头羊。 
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理带给企业的6个惊喜

    数据治理带给企业的6个惊喜

    数据治理实际是一把双刃剑。一方面,法律法规的强制规定能立即引起客户对数据治理的重视。另一方面,为了达到合规,很多企业在实际操作中只会做到……查看详情

    发布时间:2019.11.22来源:知乎浏览量:101次

  • 一文说清数据资产

    一文说清数据资产

    为什么说数据是资产何为数据资产,首页我们先了解一下数据到底是什么?按照一般的定义,数据就是数值,是通过我们的观察、实验和计算得出的结果。……查看详情

    发布时间:2020.07.17来源:CSDN浏览量:105次

  • 大数据:产业链条将更为完备

    大数据:产业链条将更为完备

    2018年,我国大数据产业呈现健康快速发展态势,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节产业规模有望达到5700……查看详情

    发布时间:2019.02.20来源:亿信华辰浏览量:106次

  • 为什么数据治理对企业这么重要?

    为什么数据治理对企业这么重要?

    现在很多企业都有自己的数据治理计划,从而更便捷的管理企业,那么所谓的数据治理其实就是我们常说的数据分析,将零散的数据汇总起来,进行统一的……查看详情

    发布时间:2019.07.17来源:知乎浏览量:130次

  • 了解当今数据驱动型企业的治理核心

    了解当今数据驱动型企业的治理核心

    数据治理不仅涉及风险管理。它是关于深入了解数据的核心,使组织中的每个人都能更轻松地使用和信任数据,从而获得业务优势。良好的数据治理系统不……查看详情

    发布时间:2019.02.28来源:亿信华辰浏览量:115次

  • 数据质量对于数据分析来说至关重要

    数据质量对于数据分析来说至关重要

    数据质量的关键所在包括:大致分为完整性,一致性,准确性,有效性和及时性这五个组件。……查看详情

    发布时间:2019.11.13来源:知乎浏览量:132次

  • 杰出数据科学家的关键技能是什么?

    杰出数据科学家的关键技能是什么?

    学习如何应用不同的Python或R算法真的很简单:众所周知, 我们只需要修改一两行代码,就能将线性回归迁移到神经网络、SVM,或者你喜欢……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:120次

  • 医疗领域的数据治理

    医疗领域的数据治理

    数据治理将为患者和护理人员实现价值。医疗保健系统和提供者越来越关注使用证据来为临床和运营决策提供信息的需求。这导致他们组装并批判性地评估……查看详情

    发布时间:2018.11.20来源:Lydia Lee浏览量:132次

  • 善治:良好学校的基础

    善治:良好学校的基础

    包机行业的头号问题是什么?大卫弗兰克认为缺乏董事会治理能力。弗兰克说:“强大的董事会将改善特许学校的许多实践问题,从那些正在努力进入高绩……查看详情

    发布时间:2019.03.06来源:亿信华辰浏览量:109次

  • 数据治理:让数据质量更好(data governance)

    数据治理:让数据质量更好(data governance)

    核心提示:大数据时代数据产生的价值越来越大,基于数据的相关技术、应用形式也在快速发展,开发基于数据的新型应用已经成为高校信息化建设的一个……查看详情

    发布时间:2019.11.22来源:CSDN浏览量:553次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议