医疗领域的数据治理

发布时间:2018.11.20来源:Lydia Lee浏览量:157次标签:数据治理

医疗保健分析之旅的第一步

医疗保健系统和提供者越来越关注使用证据来为临床和运营决策提供信息的需求。这导致他们组装并批判性地评估关于护理递送,性能和成本的更大的数据集。随着卫生系统继续采用技术来实现新的或改进的诊断和治疗方法,我们的数据集的规模将继续增长。

医疗保健领域的众多利益相关者生成和收集的大量数据有许多不同的形式 - 保险索赔,医生笔记,医疗记录,医学图像,药品研发,社交媒体中的健康对话以及可穿戴设备和其他信息。监控设备。数据增长速度比以往任何时候都快,到2020年,每秒为地球上的每个人创造约1.7兆字节的新信息(Forbes,2015)。

这些数据的规模是第四次工业革命的核心,以及它最终将对我们未来照顾患者和社区的方式产生的影响。

随着医疗保健环境越来越依赖数字技术来支持医疗服务(在用户,组织和医疗保健系统层面),他们使用和交换数据的能力成为转型的关键推动因素。在全球医疗系统中,数据和分析(D&A)正在重塑领导者做出基于证据的决策的方式,以改善患者的治疗效果和运营绩效。然而,尽管数据激增,但大多数组织发现很难优化数据资产以提供复杂而实用的见解。

战术影响和战略价值

当医疗保健组织实施新技术以支持业务和临床转型时,他们通常会关注两个层面的影响:技术对工作流程的直接战术利益以及相关的关键绩效指标; 以及利用新数据并将其与现有数据集相结合以创造新价值的战略收益。大多数人倾向于关注第一组福利,而忽视后者提供的大量机会。

为了使医疗保健组织真正意识到数据分析能力的潜力,他们必须转变他们的方法来解决这些变化水平。本文档几乎专注于经常错失的战略机遇,这个机会最有希望转变综合护理网络/系统:数据治理

战略的基础

数据治理定义了组织如何管理其数据资产,以及在数字世界中,如何实施改进的决策制定。这需要适当的权限模型来管理数据功能。许多医疗保健领导者都了解数据治理的重要性,但很难:

  • 了解他们的数据所在的位置以及如何访问它
  • 实施有效的流程,保护数据免受不适当的发布和访问威胁; 和
  • 获取并开发适当的资源和技能组合来管理医疗保健数据。

为了获得有关该主题的最新思考,我们收集了毕马威全球领先的D&A专业人士的经验,并采访了医疗保健行业的首席执行官和首席信息官,以更好地了解他们的关注点和抱负。我们设计和实施数据治理的框架旨在通过概述有效管理企业数据资产的实际步骤,揭开主题的神秘面纱并帮助克服常见的挑战和陷阱。

首先,我们定义数据治理及其关键元素。认识到数据管理,所有权,政策和标准的重要性为可持续治理奠定了基础。我们重点介绍了医疗保健组织在开始D&A之旅时陷入的典型数据治理“陷阱”。

接下来,我们概述了毕马威构建和实施数据治理的方法,包括角色和职责,关键数据管理功能和关键成功因素。我们全程编织,提供来自全球医疗保健客户的案例研究,分享重要的经验教训。

最后,我们探讨了其他重要的考虑因素,例如保护信息隐私(在监管环境中),数据共享(内部和外部)以及支持数据管理技术。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 什么是主数据管理系统?

    什么是主数据管理系统?

    采集与集成、共享、数据质量、数据治理是主数据管理的四大要素,主数据管理要做的就是从企业外部和企业的多个业务系统中采集和整合最核心的、最需……查看详情

    发布时间:2020.04.29来源:知乎浏览量:145次

  • 数据治理的目的和意义

    数据治理的目的和意义

    ​在"新基础设施"和疫情等外部因素的推动下,数字化转型正对越来越多的行业而言变得重要且紧急。如何更好地利用数据已经成为企业数字化转型的关……查看详情

    发布时间:2022.06.09来源:小亿浏览量:1163次

  • 数据湖架构 - 最佳实践指南

    数据湖架构 - 最佳实践指南

    实施正确的数据湖架构对于将数据转化为价值至关重要。无论您的数据湖中有多少数据,如果您缺乏有效管理数据、跟踪数据并确保其安全的架构特性,那……查看详情

    发布时间:2021.06.18来源:亿信数据治理知识库浏览量:160次

  • 企业级数据治理面临的挑战与对策

    企业级数据治理面临的挑战与对策

    数据治理是社会深度信息化的产物,显示数据正从独占转为共享、从封闭走向开放、从权力变成资源的趋势。目前国内外对其有多种定义,如数据治理是对……查看详情

    发布时间:2019.08.20来源:知乎浏览量:259次

  • 数据管理能力成熟度评估模型

    数据管理能力成熟度评估模型

    数据管理能力成熟度评估模型,中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会发布。……查看详情

    发布时间:2019.09.02来源:GB/T36073—2018浏览量:479次

  • 如何制定数据标准

    如何制定数据标准

    企业的数据标准来源非常丰富,有外部的监管要求,行业的通用标准,同时也必须考虑到企业内部数据的实际情况,梳理其中的业务指标、数据项、代码等……查看详情

    发布时间:2020.11.13来源:知乎浏览量:149次

  • 数据中台与数据仓库相比的四大优势

    数据中台与数据仓库相比的四大优势

    数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。因此,其重点在于数据的集合。数据仓库可使用维度建……查看详情

    发布时间:2020.11.21来源:知乎浏览量:169次

  • 数据治理在有效合规计划中的作用

    数据治理在有效合规计划中的作用

    有效的合规计划由许多活动部分组成。关键数据来自运行操作所需的各种工具,文档,系统和技术。因此,企业在试图获得任何特定时间的风险状况的完整……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:116次

  • 企业构建数据中台是否存在一个量化或判断的标准?

    企业构建数据中台是否存在一个量化或判断的标准?

    对这个问题有几种解读,第一种解读是说企业是否要构建自己的数据中台,这个问题有没有标准?以这个问题来讲的话,我们认为所有的企业它都需要数据……查看详情

    发布时间:2021.02.01来源:知乎浏览量:185次

  • 数据治理要“三化”

    数据治理要“三化”

    “数据是新的‘石油’。在智能化、数字化大潮下,只有对大数据进行有效、高质量治理,才能将数据“原油”转变为有价值有质量的数据“石油”,从而……查看详情

    发布时间:2019.11.29来源:知乎浏览量:135次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议