数据湖中的数据管理与治理

发布时间:2019.03.05来源:亿信华辰浏览量:160次标签:数据治理


数据湖是存储所有数据的中心位置,无论源或格式如何。它通常使用Hadoop构建。数据可以是结构化的或非结构化的。您可以使用各种存储,分析和处理工具快速提取价值,以便为关键的组织决策提供信息。

由于欢迎所有数据,因此数据湖是传统企业数据仓库的有力替代或补充。此外,随着组织转向基于云的应用程序和物联网,数据湖是一个主要选择。

在早期用例中,组织经常将数据加载到数据湖中而不尝试对其进行管理。随着数据湖泊的成熟并对组织变得更具战略性,将数据转储到数据湖中并希望获得最佳效果已经不够了。

数据湖具有灵活性,可扩展性和成本效益。但是,如果您添加数据管理和治理功能(如数据质量,元数据管理,安全性,转换以及分组或组合数据的能力),它还可以拥有传统EDW的大部分内容。如果管理得当,数据湖可以改进现有的数据计划并实现新的计划。您的组织可以在构建数据湖时选择以下四种路径之一:

选项1:稍后解决治理问题

第一种选择是忽略治理并将数据自由加载到湖中。之后,当您需要从数据中发现见解时,您将不得不找到清理数据的工具,例如机器学习技术。这种方法存在实际风险。即便是最智能的推理引擎也需要在湖中的大量数据中启动。不可避免地,数据湖的某些部分将被忽略,变得停滞,孤立,并包含结构如此之少的数据,即使是最聪明的自动化工具 - 或人类分析师 - 也不知道从哪里开始。

选项2:调整现有的传统工具

您可以利用最初为EDW设计的应用程序和流程。可以使用软件工具执行在EDW中导入干净数据时使用的ETL过程。您可以使用这些工具将数据导入湖中,但这样做成本很高,并且只能解决您需要的部分管理和治理功能。另一个缺点是ETL发生在Hadoop集群之外,减慢了操作并增加了成本,因为每个查询都必须将数据移出集群。

选项3:编写自定义脚本

使用第三个选项,您可以使用自定义脚本构建工作流,该脚本连接流程,应用程序,质量检查和数据转换以满足治理需求。这是一个受欢迎的选择,但是最不可靠和最耗费资源。您需要熟练掌握Hadoop及其生态系统的高技能分析师来利用开源工具,他们需要编写脚本来连接各个部分。随着您在湖中成长,这个过程变得更加耗时且成本更高,因为您必须不断修改复杂的代码和工作流程。

选项4:部署集成数据湖管理平台

第四种选择是整合数据湖泊管理平台,该平台专门用于摄取和管理数据湖中的大量不同数据集。Zaloni的Bedrock提供此功能。它允许您对数据进行编目,利用元数据,并支持确保数据质量,数据沿袭和自动化工作流程的持续过程。这种方法正在成为数据湖管理和治理的最佳解决方案。

当您转换到数据湖时,选择完全集成的数据湖泊管理平台将使您对数据充满信心,并对其进行扩展以包含越来越多的用户和有利于业务的用例。毕竟,这就是数据的用途,通知和改善整个组织的决策流程,并以新的和令人兴奋的方式帮助您的业务增长。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 通俗讲透什么是数据资产管理

    通俗讲透什么是数据资产管理

    作为一个初入数据治理这行的小白,刚听到数据资产管理的时候也是一脸懵,资产编目?数据生命周期?归档?概念有时候实在有些抽象,再加上数据本来……查看详情

    发布时间:2020.08.14来源:知乎浏览量:123次

  • 您是将数据视为资产吗?

    您是将数据视为资产吗?

    您可以做的最好的事情是鼓励以数据为中心的文化,实现安全和隐私的重要性,以及了解数据对您组织的成功至关重要。 这是我们不断听到的一句话,……查看详情

    发布时间:2018.12.28来源:数据治理浏览量:98次

  • 如何选择数据治理工具

    如何选择数据治理工具

    有许多场景需要数据治理工具。在严格的行业法规下运营,利用分析软件和/或定期整合关键主题领域的数据的企业将发现自己正在寻找数据治理工具来帮……查看详情

    发布时间:2019.07.04来源:知乎浏览量:105次

  • 浅谈数据质量管理

    浅谈数据质量管理

    这篇文章主要讲数据治理中的重要内容:数据质量管理。数据治理的理论和实践不断向前发展,但数据质量管理始终是数据治理的初衷,也是最重要的目的……查看详情

    发布时间:2020.06.29来源:CSDN浏览量:157次

  • 数据标准与主数据、元数据、数据质量的关系

    数据标准与主数据、元数据、数据质量的关系

    数据标准与主数据、元数据、数据质量的关系,数据治理项目的根本诉求在于提升数据质量。……查看详情

    发布时间:2020.09.24来源:知乎浏览量:292次

  • 亿信华辰&东芝|拥抱智能制造,实现生产数据实时采集

    亿信华辰&东芝|拥抱智能制造,实现生产数据实时采集

    在《中国制造2025》战略实施后,“制造业数字化、网络化、智能化”被定义为新工业革命的核心技术。离开生产数据采集,生产管理部门不能及时、……查看详情

    发布时间:2019.05.10来源:亿信华辰浏览量:120次

  • 数据服务交换和服务工具经历三个阶段

    数据服务交换和服务工具经历三个阶段

    数据交换平台是为校内各部门的管理信息系统提供数据交换,实现数据共享,并建立公共数据库,实现数据积累,为数据统计、分析、挖掘做准备。……查看详情

    发布时间:2020.08.06来源:知乎浏览量:130次

  • 在信息治理中处于领先地位

    在信息治理中处于领先地位

    随着这一关键战略的出现,应对最新的信息治理,以应对医疗保健领域的众多信息管理挑战。本博客将重点介绍IG为确保将信息视为组织资产而提出的趋……查看详情

    发布时间:2018.11.21来源:信息治理浏览量:124次

  • 数据治理的目标和原则

    数据治理的目标和原则

    所有成功的数据治理和管理计划,流程和项目都充实了这些原则。它们是帮助利益相关者聚集在一起解决 每个组织固有的数据相关冲突类型的原则 ……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:154次

  • 数据治理是建设数据中台的核心数据价值的释放之匙

    数据治理是建设数据中台的核心数据价值的释放之匙

    随着数据价值的日益突显,越来越多的企业开始进行数字战略转型,有的通过数据平台过渡到数据中台,有的直接建设数据中台。……查看详情

    发布时间:2020.06.23来源:知乎浏览量:103次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议