数据湖中的数据管理与治理

发布时间:2019.03.05来源:亿信华辰浏览量:171次标签:数据治理


数据湖是存储所有数据的中心位置,无论源或格式如何。它通常使用Hadoop构建。数据可以是结构化的或非结构化的。您可以使用各种存储,分析和处理工具快速提取价值,以便为关键的组织决策提供信息。

由于欢迎所有数据,因此数据湖是传统企业数据仓库的有力替代或补充。此外,随着组织转向基于云的应用程序和物联网,数据湖是一个主要选择。

在早期用例中,组织经常将数据加载到数据湖中而不尝试对其进行管理。随着数据湖泊的成熟并对组织变得更具战略性,将数据转储到数据湖中并希望获得最佳效果已经不够了。

数据湖具有灵活性,可扩展性和成本效益。但是,如果您添加数据管理和治理功能(如数据质量,元数据管理,安全性,转换以及分组或组合数据的能力),它还可以拥有传统EDW的大部分内容。如果管理得当,数据湖可以改进现有的数据计划并实现新的计划。您的组织可以在构建数据湖时选择以下四种路径之一:

选项1:稍后解决治理问题

第一种选择是忽略治理并将数据自由加载到湖中。之后,当您需要从数据中发现见解时,您将不得不找到清理数据的工具,例如机器学习技术。这种方法存在实际风险。即便是最智能的推理引擎也需要在湖中的大量数据中启动。不可避免地,数据湖的某些部分将被忽略,变得停滞,孤立,并包含结构如此之少的数据,即使是最聪明的自动化工具 - 或人类分析师 - 也不知道从哪里开始。

选项2:调整现有的传统工具

您可以利用最初为EDW设计的应用程序和流程。可以使用软件工具执行在EDW中导入干净数据时使用的ETL过程。您可以使用这些工具将数据导入湖中,但这样做成本很高,并且只能解决您需要的部分管理和治理功能。另一个缺点是ETL发生在Hadoop集群之外,减慢了操作并增加了成本,因为每个查询都必须将数据移出集群。

选项3:编写自定义脚本

使用第三个选项,您可以使用自定义脚本构建工作流,该脚本连接流程,应用程序,质量检查和数据转换以满足治理需求。这是一个受欢迎的选择,但是最不可靠和最耗费资源。您需要熟练掌握Hadoop及其生态系统的高技能分析师来利用开源工具,他们需要编写脚本来连接各个部分。随着您在湖中成长,这个过程变得更加耗时且成本更高,因为您必须不断修改复杂的代码和工作流程。

选项4:部署集成数据湖管理平台

第四种选择是整合数据湖泊管理平台,该平台专门用于摄取和管理数据湖中的大量不同数据集。Zaloni的Bedrock提供此功能。它允许您对数据进行编目,利用元数据,并支持确保数据质量,数据沿袭和自动化工作流程的持续过程。这种方法正在成为数据湖管理和治理的最佳解决方案。

当您转换到数据湖时,选择完全集成的数据湖泊管理平台将使您对数据充满信心,并对其进行扩展以包含越来越多的用户和有利于业务的用例。毕竟,这就是数据的用途,通知和改善整个组织的决策流程,并以新的和令人兴奋的方式帮助您的业务增长。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 侃侃什么是数据资产管理,数据资产到底是什么

    侃侃什么是数据资产管理,数据资产到底是什么

    近几年来,“数据就是资产”的观念已成为共识,大家对数据价值的重视程度与日俱增,数据资产管理也已被众多企业提上日程……查看详情

    发布时间:2020.08.19来源:微信浏览量:164次

  • 人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    “接下来的AI投资就是要去跟中国各行各业进行结合,把中国的后端效率大幅改进。而这个机会将不会小于过去几年阿里、腾讯那些前端的互联网巨头所……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:141次

  • 治理,管理和质量角色和责任

    治理,管理和质量角色和责任

    最好的数据治理计划通过减少模糊性,建立明确的问责制以及向所有数据利益相关者传播与数据相关的信息,积极主动地在数据相关问题开始之前采取措施……查看详情

    发布时间:2019.03.18来源:亿信华辰浏览量:147次

  • 大数据必备知识:数据的分类方式

    大数据必备知识:数据的分类方式

    数据分类在收集、处理和应用数据过程中非常重要。数据的分类方式很多,每种方式都有特别的作用。数据工作中不同角色往往需要理解和掌握不同的分类……查看详情

    发布时间:2019.03.12来源:亿信华辰浏览量:133次

  • 言简意赅带你探究大数据治理的真面目

    言简意赅带你探究大数据治理的真面目

    在“十四五”规划和2035远景目标中,治理一词共出现了119次,这一数字是惊人的。数据治理已然成为整个社会转型的重要赛道,数字经济时代下……查看详情

    发布时间:2022.01.23来源:小亿浏览量:143次

  • 从数据中台到AI中台

    从数据中台到AI中台

    企业对数据的利用有三个阶段:响应运营,响应业务,创造业务。数据中台解决的是响应业务的问题,第三阶段“创造业务”,则需要AI中台。1、数据……查看详情

    发布时间:2019.03.14来源:亿信华辰浏览量:123次

  • 企业怎样保护业务数据的质量

    企业怎样保护业务数据的质量

    企业内容的质量主要从以下三个方面体现:技术人员设计系统时逻辑严谨,符合规范;业务人员通过统一的培训,录入数据时有统一的规范;管理人员发现……查看详情

    发布时间:2019.09.10来源:知乎浏览量:142次

  • 数据治理-理数据,现状分析

    数据治理-理数据,现状分析

    针对企业数据治理所处的内外部环境,从组织、人员、流程、数据四个方面入手,进行数据治理现状的分析。……查看详情

    发布时间:2020.07.17来源:知乎浏览量:141次

  • 数据标准在数据治理中的意义

    数据标准在数据治理中的意义

    数据标准是为了规范系统建设时对业务的统一理解,增强业务部门、技术部门对数据的定义与使用的一致性。新系统建设应遵照(自主开发)或尽可能与数……查看详情

    发布时间:2020.04.28来源:知乎浏览量:124次

  • 元数据管理流程和方法是怎样的

    元数据管理流程和方法是怎样的

    大数据环境中,如果企业不通过元数据管理把多种复杂的信息管理起来,很难做到信息的有效利用。Gartner在研究报告里明确指出,“元数据管理……查看详情

    发布时间:2022.03.21来源:小亿浏览量:547次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议