数据治理和数据管理推动成功的词汇表和词典

发布时间:2019.02.21来源:亿信华辰浏览量:131次标签:数据治理


任何数据管理员的噩梦都是运行会议,创建迂腐和无关的业务词汇表或数据词典,最终收集网络粉尘。但是,跳过构建和维护良好的业务术语表或数据字典可能会产生错综复杂的含义,混乱的通信和业务故障。公司应该怎么做?

KIK咨询和教育服务部总裁兼负责数据管理通讯(TDAN)出版人Robert S. Seiner(Bob)在DATAVERSITY® 企业数据治理在线会议(EDGO)上发表了关于业务术语表和数据字典的演讲。对于Seiner来说,正式的数据治理是“构建成功和可持续的业务词汇表和数据字典所必需的四个秘密之一”。

它始于数据治理和数据管理

Bob Seiner认为,创建一个好的数据字典或业务术语表必须从对数据治理和数据管理的良好定义开始。数据治理涵盖“管理数据和数据相关资源的权限的执行和执行。”当Seiner谈到数据相关资源时,他的意思是元数据包含在业务术语表中根据Seiner的说法,数据管理意味着“数据管理和数据相关资源的问责制正式化。”数据管理包含了所有人,因为“人们有一种关系,”和/或数据字典“甚至是DBM的目录。”数据,就像它们与元数据有关系一样。“因此,需要对这些人的问责制进行形式化,以捕获和记录最佳的元数据。

正式的问责制有很多种,但Seiner更喜欢Non-Invasive Approach™。这意味着“将治理应用于现有流程,而不是重新定义所有流程。”但他强调,在任何数据治理风格中,“组织都希望执行和执行权限。这取决于公司如何实施数据治理并通过Data Stewards应用它。“

企业拥有词汇表和IT拥有数据字典

除了掌握数据治理和数据管理之外,管理者还需要了解Seiner在业务术语表和数据字典之间的主要差异。他引用Nicola Askham的话:

“该业务创建,维护和拥有业务词汇表。信息技术(IT)或拥有系统的人员负责数据字典。因此,两者之间的差异与谁在照顾它,谁在维护它,以及管理员是谁的元数据有关。“

进一步扩大,他引用洛厄尔弗莱曼的话:

“业务术语表的主要指令是消除整个企业的语义混淆。这意味着业务术语表中的每个业务术语都需要唯一的名称,单个定义,单个值集,一组业务规则和权威来源。这需要定义业务使用的术语。可能存在多种用法,但这些用法通常不会与业务术语表中的单一定义冲突。“

相反:为特定目的创建数据字典(例如,记录应用程序,数据仓库或Data Lake中的特定数据集)。Seiner表示,虽然业务术语很重要,但“数据字典专门将这些概念与关于数据或目录中信息的元数据联系起来。”可能会发生或将业务术语表术语与数据字典信息相关联,并且“数据字典通常具有其中的业务定义。但IT部门有责任将其放在那里。“

Seiner从他的分析中得出结论,业务必须涉及词汇表和字典开发(Bob的秘密之二)。鉴于Seiner在词典和词汇表方面的背景,他提出了他的四个建议。

成功的商业词汇表数据词典的四个秘密

1.正式管理内容

“制定一个可以展示并包含具体细节的计划,例如谁将收集信息,组织内的流程和承诺水平。评估内容的正式管理情况,“塞纳说。

Seiner的必然结果是:确保选择对组织最有意义的数据,因为往往会有如此多的数据,“为组织中的每个数据元素记录元数据都是不可想象的。”他称之为数据通用或关键数据元素(CDE)。他解释说:

“它们是特定的数据资产。通常,业务部门负责收集和决定使用哪种CDE。CDE可能来自多个数据字典,多个地方 - 甚至可能是公司仪表板上报告的数据。“

Seiner强调了解通过增加“组织特定价值”的数据

收集有关业务术语的信息,然后以物理方式存储它们。“识别CDE并遵循正式的治理计划可能并不总是顺利。他建议企业“告诉资源何时缺乏,流程何时中断,以及记录所有这些信息所需的时间框架”,然后解决这些问题以使数据治理计划重回正轨。

2.让业务参与工具的定义,生产和使用

Seiner强调,成功的数据词汇表或数据字典需要“在正确的时间以正确的方式让合适的人员参与,使用正确的数据做出正确的决策”,换句话说,就是“数据治理权利法案”。 “他认为”在组织中招募合适的人才作为数据管家“是至关重要的。

合适的人取决于谁是词汇表或词典开发的先锋。最终赞助商需要了解并将在很大程度上决定业务的角色。此人可能是IT,首席数据官或业务人员。一旦知道这一点,“企业可以理解他们将扮演的角色,为他们的词典和/或词汇表收集信息。”

从那里,Seiner说,“这个经过深思熟虑的关于角色的计划需要从战略层面的数据治理中获得批准。”买入来自于提供有关如何收集字典和/或词汇表信息的详细信息。包括流程图和RACI(责任分配矩阵)图表等工具。获得商业角色是至关重要的。

3.应用结构和指导

随着公司开始走这条道路,Seiner建议他们看看如何立即收集这些信息。他指出:“虽然市场已经提供了大量工具,但考虑到这些工具的公司需要展示其价值。这意味着专注于立即汇集并确保始终如一地收集信息。“定义,审查和提供有关被视为关键数据元素的信息的反馈的流程需要到位。

需要为词典和词汇表提供变更管理工作流程。这样,数据管理员和“组织的底层人员可以参与,确保并提供充分的定义,并解决商业界提出的有关数据的问题。”

4.增量构建和管理数据字典

正如建筑公司不会在一天内建造房屋一样,Seiner认为组织会随着时间的推移创建数据词典和业务词汇表。他表示,这种增量方法的成功来自于“围绕我们在字典中包含的合理数量的要素进行的讨论,例如,适当的时间框架。此外,我们希望让Data Stewards参与这种方法。“

构建成功的业务词汇表和数据字典需要坚持他的四个原则:正式管理内容,涉及业务的定义,工具的生成和使用,应用结构和指导,以及逐步构建和管理数据字典。Seiner最后分享了一个高级视图和一个概念框架,将业务词汇表和词典组合在一起。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 为什么你应该有一个数据治理策略

    为什么你应该有一个数据治理策略

    垃圾进垃圾出。自打孔卡和电传终端以来,这个座右铭一直是真实的。如今,复杂的IT系统同样依赖于高质量的数据,无论是在会计,生产还是商业智能……查看详情

    发布时间:2018.11.22来源:数据治理浏览量:150次

  • 干货 | 企业数据治理最重要的三步

    干货 | 企业数据治理最重要的三步

    对企业内部数据进行标准化治理,是有效利用的第一步。下面,就来说说企业数据治理要如何在项目开启时就赢在起跑线上。……查看详情

    发布时间:2021.05.12来源:亿信数据治理知识库浏览量:185次

  • 数据安全系列(一)之大数据安全管理体系

    数据安全系列(一)之大数据安全管理体系

    信息技术的快速发展和各种IT技术的广泛应用,企业越来越多的依赖于IT技术来支撑自己业务生产的正常运转。产生的大量数据,成为企业核心资产的……查看详情

    发布时间:2019.01.10来源:亿信华辰浏览量:153次

  • 数据治理的3W1H:治什么?谁来治?怎么治?选哪个?

    数据治理的3W1H:治什么?谁来治?怎么治?选哪个?

    数据治理是一个通过一系列信息相关的过程来实现决策权和职责分工的系统,这些过程按照达成共识的模型来执行,该模型描述了谁能根据什么信息,在什……查看详情

    发布时间:2021.04.23来源:浏览量:159次

  • 元数据:数据治理的燃料

    元数据:数据治理的燃料

    企业渴望从可提供竞争优势的数据中获取洞察力。实现这一目标的最常见障碍是数据质量差。如果输入到预测算法的数据是“脏的”(具有丢失或无效的值……查看详情

    发布时间:2019.08.02来源:知乎浏览量:127次

  • 通俗讲透什么是数据资产管理

    通俗讲透什么是数据资产管理

    作为一个初入数据治理这行的小白,刚听到数据资产管理的时候也是一脸懵,资产编目?数据生命周期?归档?概念有时候实在有些抽象,再加上数据本来……查看详情

    发布时间:2020.08.14来源:知乎浏览量:117次

  • 睿治元数据管理系统如何助力解决元数据管理难题

    睿治元数据管理系统如何助力解决元数据管理难题

    亿信华辰睿治数据治理平台先进的产品设计理念,充分依照国际规范、标准,具有国内先进水平。其广泛应用了MQ、分布式计算、zookeeper等……查看详情

    发布时间:2021.08.13来源:亿信华辰浏览量:137次

  • 数据治理如何解决数据多、杂、乱、差问题?

    数据治理如何解决数据多、杂、乱、差问题?

    许多大数据公司在过去一段时间都得到了较好的发展,但由于在数据生产的过程中并未做到足够重视,数据质量与可靠性则很难得到保证,这也是数据治理……查看详情

    发布时间:2022.02.21来源:小亿浏览量:306次

  • 数据治理和安全

    数据治理和安全

    从组织的角度来看,通过人力资源技术传递的数据需要尽可能保持清洁,一致和可转移。问题?多个系统,手动流程和其他低效率需要清理脏数据,稍后从……查看详情

    发布时间:2018.12.04来源:数据治理浏览量:149次

  • 国内大数据治理管理平台介绍

    国内大数据治理管理平台介绍

    数据治理的定义是对数据资产管理行使权力和控制的活动集合。其最终目的是挖掘数据价值,推动业务发展,实现盈利。……查看详情

    发布时间:2019.09.12来源:知乎浏览量:295次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议