数据标准在数据治理中的意义

发布时间:2020.04.28来源:知乎浏览量:133次标签:数据治理

一个拥有大量数据的企业,要发挥其数据的价值必须整合和加工现有或新建的各种信息系统或者业务应用中的数据,并通过将经过处理的数据嵌入到业务流程中,实现智慧化生产,智慧化管理。数据资产管理就是在上述从数据产生到数据整合、加工、使用的端到端价值实现过程中,管理各个环节的数据定义、格式、值域范围、业务规则、加工逻辑,安全权限以及数据之间的加工依赖关系等一系列事项。数据资产管理的目的是让数据的使用者能够清楚地认识数据和数据关系,进而能够用好数据;让数据应用的管理者能够洞察数据、应用、系统之间的复杂依赖关系,进而能够管好数据。

数据标准是为了规范系统建设时对业务的统一理解,增强业务部门、技术部门对数据的定义与使用的一致性。新系统建设应遵照(自主开发)或尽可能与数据标准贴近(如外购软件包);对于现有系统,应贯彻统一的业务定义,通过数据转换来满足统一的技术要求,与数据标准接轨。

数据标准适用于业务数据描述、信息管理及应用系统开发,可以作为经营管理中所涉及数据的规范化定义和统一解释,也可作为信息管理的基础,同时也是作为应用系统开发时进行数据定义的依据。
数据标准对系统集成和信息资源共享具有重要意义:
1、增强业务部门和技术部门对数据定义和使用的一致性。
2、减少数据转换,促进系统集成。
3、促进信息资源共享。
4、促进企业级单一数据视图的形成,支持管理信息能力的发展
5、建立统一的数据标准。目前存在各业务部门标准不统一,部门之间数据标准矛盾或者相互混淆的情况,导致部门间数据交换,数据共享比较困难。建立统一的数据标准有助于对数据进行统一规范的管理,消除各部门间的数据壁垒,方便数据的共享,另外数据标准同样对业务流程的规范化有帮助作用。
6、提高数据质量。电力数据的采集和传输受到采集传感器的精度、稳定性,通讯设备和环境因素的影响较大,导致存在大量的空值和垃圾数据。可通过数据质量管理对电力数据进行质量检查,找出有问题的数据,通过数据清洗,问题整改,例外排查等一系列手段提高数据质量;另外还可以通过出具数据质检报告,数据质量绩效考核来督促各业务部门重视数据质量从而加强人员和业务的管理来提高数据质量。
7、数据资产管理。将经过处理的高质量数据资产统一管理,提供全生命周期的管理和数据安全保障。并可将数据资产进行分类和编目,方便数据的展示和数据共享,同时也为数据分析和数据挖掘(电力需求预测、电力系统优化等)打好基础。
(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理运营:团队

    数据治理运营:团队

    这是关于数据治理运作的两部分系列的第二部分。“ 数据治理运作:差距 ”系列的第一部分讨论了需求是如何产生的,数据治理运营所需的一些主要原……查看详情

    发布时间:2018.11.14来源:Jayakumar Rajaretnam浏览量:139次

  • 数据治理“起航” 推动银行业高质量发展

    数据治理“起航” 推动银行业高质量发展

    银行业金融机构数据治理提上日程。近日,银监会发布《银行业金融机构数据治理指引(征求意见稿)》(以下简称《指引》),要求银行业金融机构将数……查看详情

    发布时间:2019.02.21来源:和讯网浏览量:167次

  • 全球数据治理体系建设

    全球数据治理体系建设

    数据治理体系建设是推动数字经济高质量发展的关键。美国和欧盟正在加紧构建符合自身利益诉求的数据治理体系,并力图引领全球数据治理,提升数字经……查看详情

    发布时间:2020.01.03来源:知乎浏览量:146次

  • 智与理的结合:当数据治理遇上人工智能

    智与理的结合:当数据治理遇上人工智能

    近日,中国移动研究院发布文章,解说了数据治理和人工智能两者之间各自发展历程,论证了两者在结构功能上的相互作用,阐明了两者共同发展的前……查看详情

    发布时间:2018.09.18来源:中国大数据产业观察网浏览量:398次

  • 如何建立有效的数据交换管理平台?

    如何建立有效的数据交换管理平台?

    随着企业综合管理水平的提高和信息化建设的开展和深入,企业数值转型也越发迫切,企业在转型过程中必然会有业务系统之间数据交换,但是数据交换又……查看详情

    发布时间:2020.04.22来源:知乎浏览量:182次

  • 企业数据治理的九大要素

    企业数据治理的九大要素

    元数据管理致力于处理技术元数据、业务元数据、管理元数据,通过丰富的元数据分析和检核,帮助各行各业用户获得更多的数据洞察力,进而挖掘出隐藏……查看详情

    发布时间:2020.07.10来源:知乎浏览量:250次

  • 2018年十大科技趋势与其对IT和执行的影响

    2018年十大科技趋势与其对IT和执行的影响

    消失中的企业数据中心(DisappearingEnterpriseDataCenters)目前在中国,大型企业自建并管理数据中心仍是主流……查看详情

    发布时间:2019.01.03来源:Gartner浏览量:123次

  • 银行业数据治理还面临着四方面的挑战

    银行业数据治理还面临着四方面的挑战

    一是数据整合度不高。银行内部数据虽多,涉及各个业务条线、各个部门,但未经系统化的治理,数据分布零散化,搜集整合存在错配,未能实现大数据集……查看详情

    发布时间:2019.11.29来源:知乎浏览量:137次

  • 数据标准管理体系-数据治理基础

    数据标准管理体系-数据治理基础

    目前企业缺乏专业化的信息标准管理流程,部门间缺乏沟通的统一渠道,导致标准变更和发布缺乏制度化要求,容易形成难以清理的问题数据。在短期规划……查看详情

    发布时间:2019.12.25来源:知乎浏览量:173次

  • 如何有效的进行数据治理和数据管控

    如何有效的进行数据治理和数据管控

    大数据时代的到来,让政府、企业看到了数据资产的价值,并快速开始探索应用场景和商业模式、建设技术平台。但是,如果在大数据拼图中遗忘了数据治……查看详情

    发布时间:2019.01.03来源:数据改变生活浏览量:142次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议