从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:132次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • GDPR,合规性问题推动数据治理策略

    GDPR,合规性问题推动数据治理策略

    几乎每个组织都认为数据治理很重要,那么为什么他们都没有将数据治理纳入其中呢?……查看详情

    发布时间:2019.01.23来源:亿信华辰浏览量:131次

  • 指标管理实践技能:如何让同一套指标体系展示为不同的树形结构

    指标管理实践技能:如何让同一套指标体系展示为不同的树形结构

    企业的指标体系的建设和维护工作非常繁杂,指标的数据来源、指标公式的维护、指标数据的更新、指标数据的应用,往往涉及到企业的多个部门,这些部……查看详情

    发布时间:2021.02.06来源:知乎浏览量:121次

  • 数据安全系列(一)之大数据安全管理体系

    数据安全系列(一)之大数据安全管理体系

    信息技术的快速发展和各种IT技术的广泛应用,企业越来越多的依赖于IT技术来支撑自己业务生产的正常运转。产生的大量数据,成为企业核心资产的……查看详情

    发布时间:2019.01.10来源:亿信华辰浏览量:204次

  • 数据质量六大评价标准是什么

    数据质量六大评价标准是什么

    随着大数据时代的带来,数据的应用也日趋繁茂,越来越多的应用和服务都基于数据而建立,数据的重要性不言而喻。而且,数据质量是数据分析和数据挖……查看详情

    发布时间:2022.03.28来源:小亿浏览量:6380次

  • 什么是数据治理?

    什么是数据治理?

    可用性指数据可用、可信且有质量保证,不会因为分析结果的准确性造成偏差,从业者可以放心地根据数据结果做业务决策;完整性分为两个方面,一方面……查看详情

    发布时间:2019.11.01来源:知乎浏览量:163次

  • 数据治理的目标和原则

    数据治理的目标和原则

    所有成功的数据治理和管理计划,流程和项目都充实了这些原则。它们是帮助利益相关者聚集在一起解决 每个组织固有的数据相关冲突类型的原则 ……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:214次

  • 用于指导金融行业开展大数据基础平台建设技术类标准

    用于指导金融行业开展大数据基础平台建设技术类标准

    技术类标准用于指导金融行业开展大数据基础平台建设。大数据技术本身涉及内容广泛,既包含大数据平台本身的基础软件和各类功能组件,又包括基于业……查看详情

    发布时间:2019.12.27来源:CSDN浏览量:186次

  • 金融服务数据治理:帮助价值'新货币'

    金融服务数据治理:帮助价值'新货币'

    对于在金融服务领域运营的组织,数据治理变得越来越重要。当金融服务行业董事会成员和高管在2018年初聚集在安永的金融服务领导峰会时,数据是……查看详情

    发布时间:2019.01.21来源:亿信华辰浏览量:152次

  • 数据质量稳定提升方法:使用反馈循环

    数据质量稳定提升方法:使用反馈循环

    每个额外的数据源都给流程增加了更多的复杂性,并且至少在短期内,在流程自动化之前消耗了额外的时间。现在是时候这些数据专业人员可以专门回答业……查看详情

    发布时间:2021.04.23来源:亿信数据治理知识库浏览量:200次

  • 数据治理在有效合规计划中的作用

    数据治理在有效合规计划中的作用

    有效的合规计划由许多活动部分组成。关键数据来自运行操作所需的各种工具,文档,系统和技术。因此,企业在试图获得任何特定时间的风险状况的完整……查看详情

    发布时间:2018.12.21来源:数据治理浏览量:111次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议