从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:135次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据安全问题引担忧 如何给用户一颗“定心丸”?

    数据安全问题引担忧 如何给用户一颗“定心丸”?

    信息化发展已经由IT(Information Technology)时代进入DT(Data Technology)时代,“数据安全与个人……查看详情

    发布时间:2019.02.12来源:亿信华辰浏览量:137次

  • 数据治理要处理好四个关系

    数据治理要处理好四个关系

    随着我国大数据战略的不断推进,各类生产生活行为都以数据的形式全景留痕,构建了一个与现实空间平行的“数据空间”,数据治理呼之欲出。要切实发……查看详情

    发布时间:2020.04.02来源:知乎浏览量:159次

  • 一个平台搞定数据治理,助力全国统一大市场建设

    一个平台搞定数据治理,助力全国统一大市场建设

    建立健全全国性技术交易市场,完善知识产权评估与交易机制,推动各地技术交易市场互联互通。完善科技资源共享服务体系,鼓励不同区域之间科技信息……查看详情

    发布时间:2022.06.02来源:小亿浏览量:183次

  • 全栈式数据标准管理平台方案来了!

    全栈式数据标准管理平台方案来了!

    数据标准百度给的解释就是数据标准化是企业或组织对数据的定义、组织、监督和保护进行标准化的过程。数据标准化分为开发(D)、候选(C)、批准……查看详情

    发布时间:2020.08.28来源:知乎浏览量:154次

  • 银行数据治理怎么做,先了解一下元数据管理在银行业务中的应用

    银行数据治理怎么做,先了解一下元数据管理在银行业务中的应用

    伴随着我国银行信息化建设的发展,银行形成了包括核心系统、数据仓库、风险管理、客户关系管理等在内的多种业务和管理系统。大数据给银行数据处理……查看详情

    发布时间:2020.01.03来源:亿信华辰浏览量:120次

  • 手把手系列:常用数据交换方案之RESTful接口处理

    手把手系列:常用数据交换方案之RESTful接口处理

    随着技术的发展与互联网的普及,除了传统的库表、文件方式之外,API接口也成为一种常用的交换方式。于是乎,越来越多的项目存在这样的接口数据……查看详情

    发布时间:2021.01.12来源:知乎浏览量:168次

  • 2021公安数据治理的目标

    2021公安数据治理的目标

    公安数据治理的目标是实现全局数据资源的有效整合,有效解决公安力量分散、资源分割、信息孤岛、运行封闭等问题,最终打破部门壁垒和警种壁垒。……查看详情

    发布时间:2021.04.29来源:亿信数据治理知识库浏览量:364次

  • 数据治理要“三化”

    数据治理要“三化”

    “数据是新的‘石油’。在智能化、数字化大潮下,只有对大数据进行有效、高质量治理,才能将数据“原油”转变为有价值有质量的数据“石油”,从而……查看详情

    发布时间:2019.11.29来源:知乎浏览量:131次

  • 数据治理委员会:指导原则

    数据治理委员会:指导原则

    数据所有权 指定义与特定数据集相关的各种责任级别。讨论谁负责特定的数据任务已经使我们机构的数据维护和准确性变得更加简单。……查看详情

    发布时间:2018.11.23来源:数据治理浏览量:141次

  • 数据交换管理—企业数据上链的起点

    数据交换管理—企业数据上链的起点

    随着数据体量的增长,大数据处理、大数据应用分析的门槛逐渐提高,社会普遍开始重视数据安全和隐私。目前,数据交换共享平台已成为政府和企业在系……查看详情

    发布时间:2020.08.11来源:知乎浏览量:172次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议