从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:132次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • “安全”与“共享”同行,大数据正改变着世界

    “安全”与“共享”同行,大数据正改变着世界

    什么是大数据?早在2011年,世界著名咨询公司麦肯锡就曾在《大数据:下一个创新、竞争和生产力的前沿》报告中对其进行了基础定义:“大数据是……查看详情

    发布时间:2019.01.14来源:亿信华辰浏览量:150次

  • 制定数据治理行动路线和计划

    制定数据治理行动路线和计划

    路线图是使用特定技术方案帮助达到短期或者长期目标的计划,用于新产品、项目或技术领域的开发,是指应用简洁的图形、表格、文字等形式描述技术变……查看详情

    发布时间:2020.07.17来源:知乎浏览量:186次

  • 人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    人工智能商业化提速 创新奇智瞄准三大场景万亿市场

    “接下来的AI投资就是要去跟中国各行各业进行结合,把中国的后端效率大幅改进。而这个机会将不会小于过去几年阿里、腾讯那些前端的互联网巨头所……查看详情

    发布时间:2019.01.27来源:亿信华辰浏览量:150次

  • 基础数据标准 – 从制定到落实

    基础数据标准 – 从制定到落实

    标准,是旨在一定范围内维护最佳秩序,经协商一致制定并公开颁布认定、共同遵循的一种规范性要求。……查看详情

    发布时间:2019.12.20来源:知乎浏览量:282次

  • 数据治理(R)演变

    数据治理(R)演变

    数据治理继续发展 - 并且很快。……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:120次

  • 数据治理没有权威定义

    数据治理没有权威定义

    数据治理没有权威定义,但在实践中,它要么是管理数据资产以确保可信度和责任的首要过程,要么是所述流程的最高级别,即制定决策和制定策略的流程……查看详情

    发布时间:2018.12.04来源:Daniel Howard,Philip Howard浏览量:124次

  • 提高企业数据质量能做些什么?

    提高企业数据质量能做些什么?

    如今,我们生活在数据时代,各种数字化正在实实在在的改变着企业的日常运营,我们的生活、工作、学习,现在都离不开数据,对于企业来说,数据就是……查看详情

    发布时间:2019.11.01来源:知乎浏览量:149次

  • 快速理解数据仓库、数据湖、数据工厂、数据中台

    快速理解数据仓库、数据湖、数据工厂、数据中台

    数据生产的整个链条中,对于如何筑湖、如何选址建厂、按什么工序加工、以及如何配送,这是技术部门的事情,而“数据半成品”的沉淀和积累,却不是……查看详情

    发布时间:2021.04.13来源:亿信数据治理知识库浏览量:198次

  • 数据都成为生产要素了?数据该如何治理?

    数据都成为生产要素了?数据该如何治理?

    先说说数据,其实现在说的数据和过去说的数据相比差别非常大,现在所说的数据不是一个静态文档,它是流动的数据,碎片化的数据,以各种各样的形式……查看详情

    发布时间:2020.11.23来源:知乎浏览量:262次

  • 如何构建企业安全易用的数据资产?

    如何构建企业安全易用的数据资产?

    在数据治理架构中,数据资产管理位于底层数据和数据管理与应用之间,处于承上启下的重要地位。对上支撑数据安全管理等职能建设以价值发掘为导向的……查看详情

    发布时间:2021.06.02来源:亿信华辰数据治理知识库浏览量:229次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议