从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:132次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据清洗与数据治理的3个不同点

    数据清洗与数据治理的3个不同点

    ​数据清洗,是指发现并纠正数据文件中可识别的错误的最后一道程序,是数据治理工作中必不可少的一项关键任务,是数据治理的子集.……查看详情

    发布时间:2021.04.09来源:亿信数据治理研究院浏览量:1206次

  • 企业如何快速启动数据治理项目?

    企业如何快速启动数据治理项目?

    大数据时代已经到来,各个政府机关,大中小企业都越来越重视数据的价值。然而在企业的运转过程中,却经常会产生各种各样的数据问题。……查看详情

    发布时间:2019.08.15来源:知乎浏览量:139次

  • 数据治理市场驱动因素和预测

    数据治理市场驱动因素和预测

    全球数据治理市场分散,主要参与者使用各种策略,如新产品发布,扩张,协议,合资企业,合作伙伴关系,收购等,以增加他们在这个市场的足迹,以便……查看详情

    发布时间:2019.07.11来源:知乎浏览量:157次

  • 数据质量监控

    数据质量监控

    数据质量监控可以分为数据质量的事前预防控制、事中过程控制和事后监督控制:……查看详情

    发布时间:2019.12.06来源:知乎浏览量:221次

  • 数字化转型的缺失部分:公民开发者

    数字化转型的缺失部分:公民开发者

    随着第四次工业革命席卷全球,新技术渗透到从高层城市到小村庄的各个方面。消费者的需求和期望随着技术的发展而增加,迫使企业以更快的速度提供优……查看详情

    发布时间:2019.03.07来源:亿信华辰浏览量:186次

  • 建立成功的数据治理战略

    建立成功的数据治理战略

    组织当前正在努力解决的数据分析的核心要素之一是数据治理。如果组织没有花时间构建和实施治理策略,那么组织可以做正确的事情并且仍然想知道为什……查看详情

    发布时间:2018.12.14来源:数据治理浏览量:131次

  • 实施数据治理 - 学到3个主要经验教训

    实施数据治理 - 学到3个主要经验教训

    尽管数据治理在开发过程中可能会有些流动和迭代,但遵循最佳实践并设计精心定位的路线图有助于确保成功。……查看详情

    发布时间:2018.12.21来源:亿信华辰浏览量:181次

  • 2019年数据保护政策趋势展望

    2019年数据保护政策趋势展望

    在全球数据保护法律政策中,欧美仍将扮演引领性角色。欧盟“e-PR”或带来更严格规制。美国联邦与地方隐私立法互补。……查看详情

    发布时间:2019.02.19来源:亿信华辰浏览量:136次

  • 数据治理的未来:平衡数据治理和数据管理

    数据治理的未来:平衡数据治理和数据管理

    如何通过快速访问高质量数据,灌输信心并支持数据驱动的决策,为业务合作伙伴创造竞争优势?在为所有CitizenBank的企业数据创建和实施……查看详情

    发布时间:2018.12.27来源:亿信华辰浏览量:137次

  • 没有妥协的数据治理

    没有妥协的数据治理

    在考虑当今现代企业中数据的规模和规模时,显然需要一种全新的数据治理方法。与此同时,数据治理一直是企业范围内的问题 - 而不是大数据特有的……查看详情

    发布时间:2018.11.22来源:数据治理浏览量:144次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议