从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:128次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的重点领域:关注管理层调整

    数据治理的重点领域:关注管理层调整

    当管理者发现由于其对运营或合规工作的潜在影响而难以做出“常规”数据相关的管理决策时,这种类型的程序通常会存在。……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:145次

  • 使用数据治理克服常见的业务障碍

    使用数据治理克服常见的业务障碍

    在快速发展的技术,大数据和高级分析的时代,数据治理在每个组织中都发挥着至关重要的作用,无论规模大小或行业如何。从定义元数据管理指南,到解……查看详情

    发布时间:2019.01.08来源:亿信华辰浏览量:133次

  • 你知道什么是数据中台吗?

    你知道什么是数据中台吗?

    什么是数据中台数据中台是全新的架构变革。过去三十年,企业数据管理都以传统的IT架构为基础。每当技术部门为业务部门解决问题时,需要从业务需……查看详情

    发布时间:2020.11.21来源:国云数据中台浏览量:145次

  • 不是专业数据分析师的你,该如何科学地看待大数据呢?

    不是专业数据分析师的你,该如何科学地看待大数据呢?

    似乎很多创业人,都喜欢讲一些概念化的东西。例如前两年的互联网+,例如后来的大数据,又例如最近的区块链…………查看详情

    发布时间:2019.02.13来源:亿信华辰浏览量:104次

  • 数据囤积日益增长的威胁

    数据囤积日益增长的威胁

    在数据丰富的环境中生活和工作的缺点之一是希望将所有最后的位和字节松开以备将来使用。得益于Amazon S3和Hadoop等廉价存储系统,……查看详情

    发布时间:2019.02.28来源:亿信华辰浏览量:129次

  • 赢得数据治理的五个秘诀

    赢得数据治理的五个秘诀

    到目前为止,您已经意识到拥有出色的数据分析策略还需要拥有良好的数据治理策略。毕竟,如果您的数据无法控制,那么您在其上运行的分析在一天结束……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:137次

  • 一个通用的数据中台架构应该如何构建,本文告诉你答案

    一个通用的数据中台架构应该如何构建,本文告诉你答案

    这两年,越来越多的大数据从业者提到“数据中台”的概念。在信息系统建设工作中,我们熟知系统可以分为前台和后台,但什么是中台,每个人的理解并……查看详情

    发布时间:2020.09.14来源:小亿浏览量:134次

  • 面对数据治理的挑战及难点,如何找到最佳方案?

    面对数据治理的挑战及难点,如何找到最佳方案?

    面对以上8点数据治理最佳实践方法,小编为您推荐一款好用的数据治理工具配合实施数据治理方案,不仅可以保证您的数据治理项目按计划实施,也可以……查看详情

    发布时间:2021.07.01来源:亿信数据治理知识库浏览量:114次

  • 五大数据治​​理用例和驱动因素

    五大数据治​​理用例和驱动因素

    随着数据应用程序的增长,数据治理用例也在增长。而传统的,仅限IT的数据治理方法Data Governance 1.0已经为协作的企业级数……查看详情

    发布时间:2019.01.25来源:亿信华辰浏览量:200次

  • 数据质量和数据治理之间有什么区别?

    数据质量和数据治理之间有什么区别?

    跟上无穷无尽的技术术语可能是一项艰巨的任务。松散定义的术语和行业特定的白话使水更加泥泞。特别是在数据管理方面,似乎许多单词也可以互换使用……查看详情

    发布时间:2019.07.04来源:知乎浏览量:141次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议