从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:136次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理:指定您的业务战略

    数据治理:指定您的业务战略

    数据治理是作为一个重要的业务计划,治理需要政策,所以在进行治理的时候就需要通过多方协调找到最适合自身组织的治理方法。 ……查看详情

    发布时间:2019.09.04来源:知乎浏览量:140次

  • 什么是自适应数据分析和数据治理?

    什么是自适应数据分析和数据治理?

    自适应数据和分析治理,这种方法可帮助企业保持相关性并响应组织内部和外部的快速变化的环境。在自适应数据和分析治理中,数据治理不仅仅是约束和……查看详情

    发布时间:2021.06.02来源:亿信华辰数据治理知识库浏览量:146次

  • 数据交换管理—企业数据上链的起点

    数据交换管理—企业数据上链的起点

    随着数据体量的增长,大数据处理、大数据应用分析的门槛逐渐提高,社会普遍开始重视数据安全和隐私。目前,数据交换共享平台已成为政府和企业在系……查看详情

    发布时间:2020.08.11来源:知乎浏览量:177次

  • 有效数据治理的6大原则

    有效数据治理的6大原则

    如果你常常对数据准确性而烦恼,大部分时间都用于处理数据而不是对业务进行思考分析的话,那么你需要好好对数据进行治理了。……查看详情

    发布时间:2019.10.17来源:知乎浏览量:141次

  • 数据资产管理直面企业痛点

    数据资产管理直面企业痛点

    企业日常经营活动中积累的大量数据,除了支持业务流程运转之外,越来越多地被用于帮助企业提升管理决策效率、实现价值挖掘和业务创新。企业日常经……查看详情

    发布时间:2020.09.11来源:知乎浏览量:168次

  • 如何把握数据治理项目启动的最佳时机

    如何把握数据治理项目启动的最佳时机

    如今,大数据正在社会的各行各业发挥着越来越重要的作用,数据已成为企业的核心资产和重要战略资源,是重要的生产因素。在数据驱动的信息化时代,……查看详情

    发布时间:2019.09.09来源:知乎浏览量:120次

  • 企业必须使其数据治理程序适应数据爆炸和颠覆性技术的现实

    企业必须使其数据治理程序适应数据爆炸和颠覆性技术的现实

    公司必须使其数据治理计划适应数据爆炸和颠覆性技术的现实 今天的数据爆炸 - 以及所揭示的见解 - 不仅从战略角度对组织非常有价值,而且……查看详情

    发布时间:2018.11.26来源:数据治理浏览量:127次

  • 企业数据治理项目如何落地?

    企业数据治理项目如何落地?

    数据治理在系统层面包括数据标准、元数据、数据质量、生命周期管理、数据安全、数据资产共六大核心模块;在管理层面需要通过数据治理组织、数据治……查看详情

    发布时间:2020.06.29来源:知乎浏览量:149次

  • 管理数据与拥有数据一样重要:关注数据治理和数据质量

    管理数据与拥有数据一样重要:关注数据治理和数据质量

    在许多人看来,数据 - 干净,清晰和准确的数据 - 统治着宇宙。然而,当数据质量较差时,企业及其客户都会受到影响。即使数据是原始数据,糟……查看详情

    发布时间:2019.09.20来源:知乎浏览量:185次

  • 数据质量评估体系主要参考以下5个指标

    数据质量评估体系主要参考以下5个指标

    数据质量评估体系主要参考以下指标:,针对不同的信息系统做出定量的数据质量评估,也可根据实际情况,在评估执行中进行取舍。……查看详情

    发布时间:2019.11.07来源:知乎浏览量:392次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议