从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:139次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 未来,数据治理或将成为企业新的业务增长点

    未来,数据治理或将成为企业新的业务增长点

    大数据在我们中国发展的十年时间里面,从稚嫩逐渐走向成熟,现在已经比较普遍的应用于市场中,并且全球的IT企业很重视这方面。那么这些企业都普……查看详情

    发布时间:2019.09.20来源:知乎浏览量:129次

  • 幸存下来的数据治理浪潮

    幸存下来的数据治理浪潮

    我们正在从大数据的狂野西部时期出现,当时的问题主要集中在技术上是否可行,而不是合法或道德。文化需要一段时间才能改变,工具的发展也需要时间……查看详情

    发布时间:2019.03.05来源:亿信华辰浏览量:120次

  • 重构数据治理的必要性

    重构数据治理的必要性

    拥有管理良好的数据资产并不能确切的保证你的生产业务价值。所以你就需要必备跨不同组件和活动的整体视图。那么这个时候数据治理就显得尤为重要。……查看详情

    发布时间:2018.11.14来源:马克·皮科浏览量:143次

  • 数字和业务转型始于业务流程

    数字和业务转型始于业务流程

    不断发展的业务环境意味着必须在不断改进的情况下进行数字化和业务转型。……查看详情

    发布时间:2019.02.18来源:亿信华辰浏览量:157次

  • 数据治理系列5:浅谈数据质量管理

    数据治理系列5:浅谈数据质量管理

    数据质量管理是对数据从计划、获取、存储、共享、维护、应用、消亡生命周期的每个阶段里可能引发的数据质量问题,进行识别、度量、监控、预警等一……查看详情

    发布时间:2019.12.06来源:CSDN浏览量:191次

  • 2019年采用大数据发生重大变化的6个行业

    2019年采用大数据发生重大变化的6个行业

    如今,大数据的应用对几乎任何行业的发展都会产生积极的影响,而采用这项技术,一些行业比其他行业更有可能发生重大的变化。以下是采用大数据发生……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:122次

  • 政府数据治理的国际经验与启示

    政府数据治理的国际经验与启示

    政府数据治理是当前政府信息管理研究的热点问题,对发达国家政府数据治理经验的总结有助于把握政府数据治理的普遍规律,推动我国政府数据的开发利……查看详情

    发布时间:2018.10.23来源:信息资源管理学报浏览量:188次

  • 什么是数据治理以及数据治理架构

    什么是数据治理以及数据治理架构

    数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的……查看详情

    发布时间:2018.12.06来源:数据治理浏览量:234次

  • 数据治理方案有哪几个步骤?

    数据治理方案有哪几个步骤?

    随着业务发展,公司对数据应用使用场景越来越多,数据也会随着业务快速增长,随之而来,数据质量、数据存储、数据模型建设等使用规范上都会出现一……查看详情

    发布时间:2022.03.15来源:小亿浏览量:906次

  • 数据治理运营:差距

    数据治理运营:差距

    今天,全球组织都了解数据治理(DG)是什么,它的好处以及不管理数据的风险。……查看详情

    发布时间:2019.02.14来源:亿信华辰浏览量:148次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议