从数据管理开始 才能为人工智能的成功做好准备

发布时间:2019.02.15来源:亿信华辰浏览量:136次标签:数据治理

如果你已经决定在今年做更多的人工智能实验,请首先仔细研究您的数据管理实践。

对于一个有一整个团队和组织正在急切地想要“进入人工智能领域”的CIO来说,这可能很难听到。人们很容易的就一头扎进数据科学和人工智能领域当中。然而,如果不首先了解数据管理(以及数据的其他方面)的重要性,就很难取得进展。

记住,AI即数据。在没有数据的情况下,你无法使用AI或机器学习做任何事情,因此你必须首先确保理解并管理数据的生命周期。

好的数据管理的标志

数据管理虽然不是CIO最重要的方面之一,但它对机器学习和人工智能却是至关重要。老话说得好,“输出质量是由输入质量决定的”用在这里非常合适,因为如果你拥有的是糟糕的数据,你也将得到一个糟糕的模型。一个糟糕的模型反过来又会告诉你去做错误的事情,这确实会对你的组织造成一些损害。

也就是说,当你的数据管理得当时,人工智能绝对可以改变一个组织的能力和可能性。

为了确保你的组织在使用AI时走上正确的道路,你需要仔细查看你的数据管理实践。一个数据管理的关键要素之一是理解:

你的数据来自何处

谁访问或更改了该数据

如何使用你的数据(例如,你是否有权将数据用于其他目的?)

收集数据的时间

你的数据在过去有什么用途(以及将来可能如何使用)。

4个需要检查的领域

在接下来的一年里,想想你的目标。如果AI出现在这个列表上的任何地方,你都需要认真考虑如何从事一些专注于数据和数据管理的最佳实践。在新年的会议中考虑一下这些问题。

首先,为了确保你的数据不是垃圾,你需要从全局开始,虽然这听起来可能违反直觉。你需要构建一个数据策略来回答围绕数据的这些“大”问题,然后考虑治理、质量和集成等相关的关键元素。以下是我认为可以帮助你为AI做好准备的几个方面:

数据策略:即数据的“who, what, when, why, 以及 how”。你的数据策略会告诉你所做的一切。如果你没有数据策略,你确实需要制定一个。

数据治理:管理组织数据的(或应该)的规则和系统。数据治理应该由数据策略来驱动。治理应该考虑(并管理)数据的所有方面,包括数据质量、数据访问和数据集成。

数据质量:拥有一个能够确保数据准确和有用的过程和系统。数据质量的保证需要从收集数据的瞬间开始,并在整个数据生命周期中持续。数据质量应该由数据治理规则/系统来决定和驱动。

数据集成:许多人会将数据集成到其他领域(不管他们是否有这样的意识),但是他们应该在考虑数据时就考虑到这一点。它将被数据策略所告知和驱动,并与数据质量密切相关。必须花时间考虑如何在整个组织和整个数据生命周期中集成数据。

数据管理、数据策略和数据治理可能不像谈论人工智能和机器学习来得那么吸引人,但是在能够正确地使用人工智能之前,必须先将这些数据整理好。当你的同事在下一次社交活动中不断谈论人工智能时,你必须提醒他们数据有多重要。提醒他们“输出质量是由输入质量决定的”--尤其是在人工智能和机器学习方面。

在未来一年,预计我们将看到会有比以往任何时候都多的资源转向人工智能和与是人工智能相关的项目上面。如果人工智能是你所在的IT组织的下一个重点关注领域,那就从数据管理开始吧,这样才能为自己最后的成功做好准备。



(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理的发展历程

    数据治理的发展历程

    数据治理技术的发展使得其中最好的技术为组织的数据景观提供了完全的透明性,并为业务用户在搜索、访问和应用数据时提供了一种方便快捷的体验。……查看详情

    发布时间:2018.11.19来源:艾米丽华盛顿浏览量:196次

  • 浅谈数据质量管理

    浅谈数据质量管理

    随着互联网及数字化技术的飞速发展,我们生活在一个数字化转型的时代,各种数字化正在实实在在的改变着企业的日常运营,以及我们每个人的衣食住行……查看详情

    发布时间:2019.07.26来源:知乎浏览量:184次

  • 如何有效的进行数据治理?

    如何有效的进行数据治理?

    如果你处理或使用过大量数据,一定有听到过“数据治理”这个词。你会思考数据治理是什么?数据治理是否适合你?如何实施……查看详情

    发布时间:2019.01.09来源:亿信华辰浏览量:161次

  • 主数据管理第二步——体系构建

    主数据管理第二步——体系构建

    “纸上得来终觉浅,绝知此事要躬行。”然而主数据管理工作该怎么做?流程是怎样的?责任如何落实?……这些问题无不与主数据管理体系的构建有着密……查看详情

    发布时间:2019.10.24来源:亿信华辰浏览量:192次

  • 大数据时代的数据治理

    大数据时代的数据治理

    随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破……查看详情

    发布时间:2020.03.19来源:知乎浏览量:138次

  • 避免这五大数据治​​理错误

    避免这五大数据治​​理错误

    如果您正在开始一个大数据项目,那么您可能会遇到一个或多个数据管理挑战。您就如何实施数据治理以及如何控制数据流所做出的决策可能会影响您的项……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:134次

  • 数字健康治理:21世纪数字经济的管理与战略

    数字健康治理:21世纪数字经济的管理与战略

    数字化健康技术,解决方案和决策方法正在改变医疗保健的提供,重塑患者(和健康消费者)的期望,并为健康计划,卫生系统,信息公司和其他利益相关……查看详情

    发布时间:2018.11.21来源:数字健康治理浏览量:181次

  • 数据治理到底是什么?

    数据治理到底是什么?

    幸运的是,培训可以为精通数据的员工提供这些技能。通过正确的沟通工作,您的数据治理团队可以开展治理业务,确信他们能够为您的各种数据利益相关……查看详情

    发布时间:2019.03.19来源:亿信华辰浏览量:203次

  • 谈谈数据治理是什么?

    谈谈数据治理是什么?

    数据治理这项工作一直都是存在的,和数据库设计的三范式一样都是为了数据的管理。数据治理是一整套完整的组织、制度、技术管理行为。……查看详情

    发布时间:2021.03.06来源:人人都是产品经理浏览量:160次

  • 中小银行数据治理工作所面临的问题

    中小银行数据治理工作所面临的问题

    虽然各银行积极响应监管要求,开展数据治理工作,但《中小银行金融科技发展研究报告(2019)》显示中小银行的数据治理基本处于萌芽期,达91……查看详情

    发布时间:2020.07.09来源:小亿浏览量:258次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议