不再有肮脏的数据:关于数据治理的五个提示

发布时间:2019.01.09来源:亿信华辰浏览量:71次标签:数据治理

       尽管商业智能是获取和保持客户、充分衡量公司业绩和提供灵活性的关键工具,但挑战依然存在。其中最重要的一个:数据治理
      虽然数据治理对于成功的双数据库和数据仓库工作至关重要,但这并不容易。拯救:五个你可能犯的肮脏的数据行为,以及五个清除它们的方法。

第1号肮脏数据做法
你认为买最酷的商业情报工具就足够了。

       你的双报告工具只能和你提供给他们的信息一样好(也就是说,“垃圾进来,垃圾出去”),这可能是一个真理,但这并不意味着正确的行动是给定的。IT咨询公司Ovum的主要分析师Ian Charlesworth说,由于大多数机构仍然对数据持孤立的观点,数据治理仍然是一个难题。数据往往被隔离在不同的业务单元中,被输入、处理和查看的方式也不同,使得“一个版本的真相”变得不可能。
       把它清理干净知道你的数据。
       数据治理的第一步是建立一个清晰的数据视图;找出你拥有什么,信息是否可靠,哪些数据是有益的,但以前没有使用过,哪些数据被损坏,以及它在项目中重复了哪些信息。并确保向利益相关者传达没有数据治理的成本和创建数据治理的价值。
第二号肮脏数据的做法
你会拖延,直到你可以做一次彻底的检查。
       一种要么全有要么全无的方法几乎肯定会失败。首先,在时间和资金有限的情况下,一次性控制所有数据是不现实的,在有可能进行这种彻底检查的组织中,用户的抵制几乎是必然的。
       把它清理干净从小处开始,往大处想。
       根据您的总体愿景,而不是全部或全部地优先考虑数据治理的最关键方面。例如,Charlesworth建议将重点放在四个关键领域。

       创建数据质量流程和过程,并在可能的情况下将其嵌入到数据创建或捕获点。例如,在订单输入系统中创建数据验证例程,或为名称和地址命名建立企业标准。
       指派一名数据管理员.这个人应该是企业内部的人,能够在整个企业中维护和执行数据质量做法。这个人应该对企业使用数据的方式和地点有深入的了解,并且知道谁可以在企业和企业之间充当联络人。
       创建主数据管理解决方案。首先,这意味着为整个业务的核心信息资产分配唯一的标识符,如服务代码、客户定义等。
集成元数据。元数据为IT和业务提供重要信息,将复杂信息放入外行人的术语中,并传递关于基础数据语法、语义正确性等重要信息。
第3号肮脏数据做法
数据治理政策已经制定——不要再担心了。
       数据治理通常是结合特定的数据仓库或bi项目开始的。然而,如果你认为数据治理是一个“项目”,那么你的努力就注定要失败。成功的数据治理取决于企业对技术和文化基础的长期承诺。
       把它清理干净建立数据管理文化。
正在进行的培训和衡量数据治理效益的关键里程碑可以帮助保持用户雷达上的质量控制。成功的数据治理还取决于高级管理人员的专门赞助。Charlesworth说,首席信息官通常是这份工作的最佳人选,因为首席信息官可能将前瞻性思维与专注于流程、资金和技术方面的效率结合起来。有些公司甚至专门为该职位设立了一个c级头衔,例如首席数据官或首席数据官。
第4号肮脏数据做法
你让繁文缛节吞噬了你的生活。
       Charlesworth说,许多数据治理努力没有显示出积极的变化,而是在会议和官僚机构中停滞不前。但如果你不专注于行动和明显的胜利,用户将不会直接感受到积极的好处,使用户不太可能做出承诺。
       把它清理干净如果你想获得快速的胜利,你可以选择快速的胜利。
       为了获得用户的支持和承诺,您必须创建、演示并在内部营销通过数据治理获得的积极变化。例如,一开始要关注的一个可衡量的好处是可以改进订单项的验证以减少错误。
第5号肮脏数据做法
你把一切都安排好了。
       你能准确地区分投资利益并将其归属于特定的项目吗?Charlesworth说,在当今这个多方面、复杂的商业环境中,这是不可能的。他说,计算某项投资的投资回报率时,他假定业务中的其他一切要么原地踏步,要么对收益没有影响。
       把它清理干净创造一个清晰的成功图景。
       Charlesworth建议考虑其他指标,如内部收益率(衡量投资效率或项目预期产生的增长率)和经济增加值(估计真正的经济利润)。然而,Charlesworth说,最重要的并不是计算本身,而是围绕着定义成功的讨论——成功是什么样子的,你是如何知道何时成功的。这在衡量数据治理在不同阶段和粒度级别的价值方面尤其重要,以确保您保持在正确的轨道上,如果没有,则进行校正。他的例子包括一个数据质量仪表板,显示数据处理的准确性、数据一致性和规则/度量的重用,以及具体项目的指标,如产品主数据元素的标准化。

(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 四个用例证明数据治理的自动化的好处

    四个用例证明数据治理的自动化的好处

    如果没有至少某种程度的元数据驱动的自动化,组织就无法充分利用数据驱动的战略。……查看详情

    发布时间:2019.02.15来源:亿信华辰浏览量:78次

  • 大数据平台应用开发的五个痛点

    大数据平台应用开发的五个痛点

    随着数据利用率的提高和数据共享行为变得频繁,对于大数据平台应用开发来说,如何进行数据交换是每个平台组件都绕不过去的问题。目前大数据平台应……查看详情

    发布时间:2020.08.21来源:知乎浏览量:44次

  • 当下数据治理是多么的重要

    当下数据治理是多么的重要

    公司有大量数据来自外部,更多数据在内部创建或更新,因此数据可能应该“受到管理”,因此您可以拥有良好的数据。数据治理是一组流程,可确保在整……查看详情

    发布时间:2019.09.04来源:知乎浏览量:72次

  • 10个顶级元数据管理工具

    10个顶级元数据管理工具

    元数据管理解决方案监控整个生命周期中的数据,包括数据分析,数据价值,数据治理以及风险和合规性。……查看详情

    发布时间:2019.07.11来源:头条浏览量:159次

  • 数据治理(DG)

    数据治理(DG)

    数据治理(DG)是对企业中使用的数据的可用性,可用性,完整性和安全性的整体管理。健全的数据治理计划包括理事机构或理事会,一套明确的程序和……查看详情

    发布时间:2018.11.12来源:techtarget浏览量:85次

  • 如何成功实现一个数据治理项目,大神详细拆解实施要点

    如何成功实现一个数据治理项目,大神详细拆解实施要点

    此文将主要围绕数据治理项目具体阐述实施步骤、工具平台的功能,并基于实践经验,提出数据治理成功的要素。全文有点长,非常实用的干货,建议收藏……查看详情

    发布时间:2021.05.26来源:亿信数据治理知识库浏览量:169次

  • 如何降低BI系统建设风险?数据治理告诉你答案

    如何降低BI系统建设风险?数据治理告诉你答案

    如何降低BI系统建设风险?如何更好地管理和控制数据,做好数据体系建设,而非打造一个又一个割裂孤立的系统?这其中数据分析与数据治理双翼并行……查看详情

    发布时间:2021.03.23来源:亿信数据治理研究院浏览量:440次

  • 数据安全系列(一)之大数据安全管理体系

    数据安全系列(一)之大数据安全管理体系

    信息技术的快速发展和各种IT技术的广泛应用,企业越来越多的依赖于IT技术来支撑自己业务生产的正常运转。产生的大量数据,成为企业核心资产的……查看详情

    发布时间:2019.01.10来源:亿信华辰浏览量:96次

  • 安全数据交换方案已成为信息化建设的重要发展方向

    安全数据交换方案已成为信息化建设的重要发展方向

    为保护重要数据和应用系统的安全,目前各级政府部门普遍采用多个网络并行的方式。但是随着信息化建设的不断深入,不同网络之间或不同安全域之间的……查看详情

    发布时间:2020.08.21来源:知乎浏览量:43次

  • 银行数据治理包括哪几个方面

    银行数据治理包括哪几个方面

    从《银行业金融机构数据治理指引》相应章节可看出, 数据治理/管理的核心是基础数据、衍生数据,以及产生与 应用这些数据的组织架构、运行机制……查看详情

    发布时间:2021.04.06来源:数据治理研究院浏览量:93次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议