数据治理和数据管理推动成功的词汇表和词典

发布时间:2018.12.27来源:亿信华辰浏览量:134次标签:数据治理


任何数据管理员的噩梦都是运行会议,创建迂腐和无关的业务词汇表或数据词典,最终收集网络粉尘。但是,跳过构建和维护良好的业务术语表或数据字典可能会产生错综复杂的含义,混乱的通信和业务故障。公司应该怎么做?


它始于数据治理和数据管理


创建一个好的数据字典或业务术语表必须从对数据治理和数据管理的良好定义开始。数据治理涵盖管理数据和数据相关资源的权限的执行和执行。数据管理意味着数据管理和数据相关资源的问责制正式化。数据管理包含了所有人,因为人们有一种关系,和数据字典甚至是DBM的目录。数据,就像它们与元数据有关系一样。因此,需要对这些人的问责制进行形式化,以捕获和记录最佳的元数据。


正式的问责制有很多种。这意味着将治理应用于现有流程而不是重新定义所有流程。但他强调,在任何数据治理风格中,组织都希望执行和执行权限。这取决于公司如何实施数据治理并通过Data Stewards应用它。


企业拥有词汇表和IT拥有数据字典


除了掌握数据治理和数据管理之外,管理者还需要了解Seiner在业务术语表和数据字典之间的主要差异。


该业务创建,维护和拥有业务词汇表。信息技术(IT)或拥有系统的人员负责数据字典。因此,两者之间的差异与谁在照顾它,谁在维护它,以及管理员是谁的元数据有关。


业务术语表的主要指令是消除整个企业的语义混淆。这意味着业务术语表中的每个业务术语都需要唯一的名称,单个定义,单个值集,一组业务规则和权威来源。这需要定义业务使用的术语。可能存在多种用法,但这些用法通常不会与业务术语表中的单一定义冲突。


相反:为特定目的创建数据字典(例如,记录应用程序,数据仓库或Data Lake中的特定数据集)。虽然业务术语很重要,但数据字典专门将这些概念与关于数据或目录中信息的元数据联系起来。可能会发生或将业务术语表术语收集或连接到数据字典信息,并且数据字典通常具有其中的业务定义。但是IT有责任把它放在那里。


成功的商业词汇表数据词典的四个秘密


1.正式管理内容


制定一个可以展示并包含具体细节的计划,例如谁将收集信息,组织内的流程和承诺水平。评估内容的正式管理程度。


确保选择对组织最有意义的数据,因为往往会有如此多的数据,为组织中的每个数据元素记录元数据都是不可想象的。我们称之为数据通用或关键数据元素(CDE)。


它们是特定的数据资产。通常,业务部门负责收集和决定使用哪种CDE。CDE可能来自多个数据字典,多个地方-甚至可能是公司仪表板上报告的数据。


通过增加组织特定价值的数据


收集有关业务术语的信息,然后将其物理存储。识别CDE并遵循正式的治理计划可能并不总是顺利。他建议企业告诉资源何时缺乏,流程何时中断,以及记录所有这些信息所需的时间框架,然后解决这些问题以使数据治理计划重回正轨。


2.让业务参与工具的定义,生产和使用


成功的数据词汇表或数据字典需要在正确的时间以正确的方式让合适的人员参与,使用正确的数据做出正确的决策,换句话说,就是数据治理权利法案。在组织中招募合适的人才作为数据管家是至关重要的。


合适的人取决于谁是词汇表或词典开发的先锋。最终赞助商需要了解并将在很大程度上决定企业的角色。此人可能是IT,首席数据官或业务人员。一旦知道这一点,企业可以理解他们将扮演的角色,为他们的词典和/或词汇表收集信息。


从那里,这个经过深思熟虑的关于角色的计划需要从战略层面的数据治理中获得批准。买入来自提供有关如何收集字典和/或词汇表信息的详细信息。包括流程图和RACI(责任分配矩阵)图表等工具。获得商业角色是必不可少的。


3.应用结构和指导


随着公司开始走这条路,我们建议他们看看如何立即收集这些信息。虽然市场已经提供了大量工具,但考虑到这些工具的公司需要展示其价值。这意味着专注于立即汇集并确保信息的收集始终如一。定义,审查和提供有关被视为关键数据元素的信息的反馈的过程需要到位。


需要为字典和词汇表提供变更管理工作流程。这样,数据管家和组织的底层人员可以参与,确保并提供充分的定义,并解决商业界提出的有关数据的问题。


4.增量构建和管理数据字典


正如建筑公司不会在一天内建造房屋一样,我们相信组织会随着时间的推移创建数据词典和业务词汇表。这种增量方法的成功来自于围绕我们在字典中包含的合理数量的元素的讨论,例如,适当的时间框架。


构建成功的业务词汇表和数据字典需要坚持他的四个原则:正式管理内容,涉及业务的定义,工具的生成和使用,应用结构和指导,以及逐步构建和管理数据字典。


(部分内容来源网络,如有侵权请联系删除)
立即免费申请产品试用 免费试用
相关文章推荐
  • 数据治理是建设数据中台的核心数据价值的释放之匙

    数据治理是建设数据中台的核心数据价值的释放之匙

    随着数据价值的日益突显,越来越多的企业开始进行数字战略转型,有的通过数据平台过渡到数据中台,有的直接建设数据中台。……查看详情

    发布时间:2020.06.23来源:知乎浏览量:109次

  • 完善和高效的数据交换管理平台

    完善和高效的数据交换管理平台

    EsDataExchange是亿信华辰公司推出的一款解决企业和政府部门数据交换管理的成熟产品,该平台是亿信华辰公司自主研发的具有独立知识……查看详情

    发布时间:2020.04.23来源:知乎浏览量:115次

  • 什么是数据治理?

    什么是数据治理?

    关于数据治理,我需要了解什么?数据治理要求组织了解并评估其数据必须满足的法规要求,法律要求和业务最佳实践,建立规则,并采用自动化和人工流……查看详情

    发布时间:2018.11.16来源:互联网浏览量:136次

  • 数据质量包括那些方面

    数据质量包括那些方面

    数据是组织最具价值的资产之一。企业的数据质量与业务绩效之间存在着直接联系,高质量的数据可以使公司保持竞争力并在经济动荡时期立于不败之地。……查看详情

    发布时间:2020.04.09来源:百度浏览量:183次

  • 用大数据守护绿水青山,铸就“智慧环保”

    用大数据守护绿水青山,铸就“智慧环保”

    为了打破数据壁垒,基于亿信华辰的睿治数据治理平台和实时大数据平台PetaBase-s搭建A市生态环境大数据管理平台。……查看详情

    发布时间:2021.05.07来源:亿信华辰浏览量:166次

  • 北大光华王汉生教授万字长文,讲透数据治理问题!

    北大光华王汉生教授万字长文,讲透数据治理问题!

    2018年3月16日,中国银监会发布了《银行业金融机构数据治理指引(征求意见稿)》,就相关数据治理问题,向全社会公开征求意见,至此银行业……查看详情

    发布时间:2019.06.03来源:王汉生浏览量:125次

  • 云端世界数据治理的12步指南

    云端世界数据治理的12步指南

    数据治理是任何大数据战略的关键组成部分。随着公司越来越多地转向数据来影响他们的决策,数据所有者必须了解跨越应用程序,内部部署设施和云的数……查看详情

    发布时间:2018.11.19来源:Joey Jablonski浏览量:137次

  • 数据湖与数据仓库之间的桥梁

    数据湖与数据仓库之间的桥梁

    数据湖的吸引力和新颖的功能对传统的数据仓库(DWH)系统构成了巨大的威胁。DWH的主要缺点包括与不适应不断发展的数据环境的刚性内部结构相……查看详情

    发布时间:2021.07.26来源:亿信华辰数据治理知识库浏览量:139次

  • 数据治理 定义,挑战和最佳实践

    数据治理 定义,挑战和最佳实践

    数据治理构成了公司范围数据管理的基础,可以有效地使用可信赖的数据。有效的数据管理是一项需要集中控制机制的重要任务。 为了帮助最终用户更……查看详情

    发布时间:2019.02.20来源:数据治理浏览量:179次

  • 构建成功的数据治理策略

    构建成功的数据治理策略

    随着组织继续努力解决他们的分析过程,他们开始意识到他们需要退后一步,从头开始重新思考他们的数据策略。当他们这样做,并从一开始就通过良好的……查看详情

    发布时间:2019.02.27来源:亿信华辰浏览量:184次

相关主题
您点击 “提交”,表明您已理解并同意接受本网站隐私政策和用户协议